
1

With Carrots 🥕 
and Sticks 🏏
Can the Browser Handle Web Security?



2

Motivation



3

Motivation



4



Obstacles



6

1. Write a new, improved function 

2. Disallow new code to use the bad function

3. Rewrite all existing code to use the new API

4. Remove the bad API.

Removing bad APIs: in a distributed system



7

1. Write a new, improved function 

2. Deprecate

3. Allow websites to opt-out of existing behavior

4. Wait. 

5. Make the bad API opt-in (or fully remove the bad API.

Removing bad APIs from the web



8

When considering changes to legacy features or 
behavior…

… the benefit of the proposed change should be weighed 
against the likely cost of breaking content.



9

In case of conflict, consider users over authors over 
implementors over specifiers over theoretical purity. 

In other words costs or difficulties to the user should be 
given more weight than costs to authors; which in turn 
should be given more weight than costs to implementors; 
[...] Of course, it is preferred to make things better for 
multiple constituencies at once.



🏏 < 🥕



11

2016
Letʼs Encrypt Released
Secure Context Spec

20132014
Active Mixed Content Blocked
Snowden leaks
Google boosts page rank for HTTPS

2015
Intent to Deprecate Insecure HTTP
Upgrade-Insecure-Requests
HTTP2 requires HTTPS

2017
Firefox warns on insecure logins
WoSign/StartSSL distrusted

2018
Secure Contexts Everywhere
Letʼs Encrypt supports wildcards
GDPR in the EU
TLS1.3 0RTT

2020
A global 
pandemic forces 
almost the entire 
world into 
isolation.  
Businesses and 
social activities 
happens online

2021
Chrome address bar does HTTPS First
Firefox ships full HTTPSFirst in PBM
Browsers phasing out positive 
indicators and introducing negative 
ones.

2023
Chrome upgrades mixed    
passive content
HTTP3 requires HTTPS
Chrome does HTTPSFirst

2024
Firefox address bar does HTTPSFirst
Firefox starts HTTPSFirst roll-out



Outlook
What’s left?



Encrypting
the
un-encryptable

What about local networks?

What about regional differences?



1
4

CSRF
Cross-Site Request Forgery



15

CSRF Interventions

SameSite 
attribute

2016 2019

SameSite=
none

2020

Lax By 
default*

in Chrome 
2018

Safari ITP - 
partitioned 
cookies by 

default

2019

Fetch 
Metadata

Sec-Fetch 
headers

Presentation template for the timeline from Slidesgo and Freepik.

Firefox 
Cookie 
Protection 
(partitioned 
by default)

2022

http://bit.ly/2PfT4lq
https://bit.ly/2AB5gGa


Outlook
What’s left?



Lax By 
Default What would it take to make 

lax-by-default more impactful?

https://web.dev/articles/samesite-cookies-explained#samesitelax_by_default 

https://web.dev/articles/samesite-cookies-explained#samesitelax_by_default


CHIPS &
3rd Party 
Cookies

Are Third Party Cookies really going 

to be deprecated?



1
9

XSS
Cross-Site Scripting



20

Source: https://twitter.com/joernchen/status/1086237923652046849]

https://twitter.com/joernchen/status/1086237923652046849


21

Source: https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time]

CVEs with 
Cross-Site Scripting

CVEs with 
Insufficient 
Information

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time


2
2

Browser-based 
XSS defenses

Two case studies



2
3

Browser-based 
XSS defenses

Two case studiesmitigations



24

XSS Filters

XSS Filter in 
Internet 

Explorer 8

2008 ~2012

“XSS auditor 
bypasses don't 

constitute 
Chrome 
security 

vulnerabilities”

2018/9

XSS Filter 
&

XSSAuditor 
removed2010

IE XSS Filter 
Attacks

&
Chrome’s 

XSSAuditor 
announced

2016

Bugs in XSS 
auditor can be 
used to attack 

websites.

Presentation template for the timeline from Slidesgo and Freepik.

http://bit.ly/2PfT4lq
https://bit.ly/2AB5gGa


“Better than RegEx” is not good 
enough. 
(Cf. http://langsec.org/occupy/)

You might cause more harm than good

(*2008 - ✝2019)

XSS Filters 

http://langsec.org/occupy/


26

Content Security Policy (CSP)

“Content 
Restrictions” 
by Gervase 
Markham

2007 2014

CSP 2
nonce & hash 

support
2013

CSP 1.0
Scripts require 

explicit 
allow-listing

2016-

CSP3
Script gadgets,
‘strict-dyna

mic’,
external 

hashes etc.

Presentation template for the timeline from Slidesgo and Freepik.

2020

Trusted Types 
as 

Chrome-only

http://bit.ly/2PfT4lq
https://bit.ly/2AB5gGa


<20% of websites have a CSP which 
controls script

90% of CSPs allow inline scripts

*2007 -

Content 
Security Policy 

https://almanac.httparchive.org/en/2024/security#content-security-policy



Adoption must be very easy: 
Low Complexity

We need High Compatibility with 
existing content

Can we focus on Prevention rather 
than Mitigation?

Lessons learned



Outlook
DOM-based XSS



Opt-In

Disallowing strings assigned to innerHTML.

Requires minting of e.g., a TrustedString object.

Trusted 
Types



Trusted 
Types

https://static.googleusercontent.com/media/publicpolicy.google/en//resources/google_commitment_secure_by_design_overview.pdf 

https://static.googleusercontent.com/media/publicpolicy.google/en//resources/google_commitment_secure_by_design_overview.pdf


let clean = DOMPurify.sanitize(evil, options);

div.innerHTML = clean;

Sanitizers
Today



let clean = DOMPurify.sanitize(evil, options);

div.setHTML(evil);
Sanitizer
API



let clean = DOMPurify.sanitize(evil, options);

div.setHTML(evil, options);
Sanitizer
API



What’s left?
and what would a 🏏 look like for XSS?



What if the Sanitizer could be applied globally, with a 
header? 

Such that innerHTML= was be implicitly rewritten to 
auto-sanitize like setHTML()?

What if this became opt-out, rather than opt-in?

Sanitizer
API



Sanitizer
API

https://blog.mozilla.org/attack-and-defense/2020/07/07/hardening-firefox-against-injection-attacks-the-technical-details/

https://blog.mozilla.org/attack-and-defense/2020/07/07/hardening-firefox-against-injection-attacks-the-technical-details/


Summary



Lots of various initiatives

Start with the carrots & opt-in security

Expect long timelines.

How to 
deprecate



Secure APIs,
safer web



Questions & Comments
★ Matrix

‒ @fbraun:mozilla.org

★ Fediverse
‒ @freddy@security.plumbing

★ EMail
‒ freddy@mozilla.com

Thank you



Questions & Comments
★ Matrix

‒ @fbraun:mozilla.org

★ Fediverse
‒ @freddy@security.plumbing

★ EMail
‒ freddy@mozilla.com

Thank you

Slides


