With Carrots »
and Sticks ¥

Motivation

100%
— All users

80%

60%

40%

20%

0%
2014 2016 2018 2020 2022 2024

Percent of Pageloads over HTTPS (14 day moving average)

Motivation

2024 CWE Top 25 Most Dangerous Software Weaknesses

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CWE-79 | CVEs in KEV: 3 | Rank Last Year: 2 (up 1) A

Out-of-bounds Write
CWE-787 | CVEs in KEV: 18 | Rank Last Year: 1 (down 1) ¥

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)
CWE-89 | CVEs in KEV: 4 | Rank Last Year: 3

Cross-Site Request Forgery (CSRF)
CWE-352 | CVEs in KEV: 0 | Rank Last Year: 9 (up 5) A

Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
CWE-22 | CVEs in KEV: 4 | Rank Last Year: 8 (up 3) A

0O OGO OO
oDy Jom
OO0 EEm

Obstacles

Removing bad APIs: in a distributed system

1. Write a new, improved function
2. Disallow new code to use the bad function

3. Rewrite all existing code to use the new API

4. Remove the bad API.

Removing bad APIs from the web

1. Write a new, improved function

2. Deprecate

3. Allow websites to opt-out of existing behavior
4. Wait.

5. Make the bad API opt-in (or fully remove the bad API).

ﬂ@

E
0
5
S
-
2

HTML Design Principles
W3C Working Draft

When considering changes to legacy features or
behavior...

... the benefit of the proposed change should be weighed
against the likely cost of breaking content.

W3C

HTML Design Principles
W3C Working Draft

<
(@)
5
S
2
2

In case of conflict, consider users over authors over
implementors over specifiers over theoretical purity.

In other words costs or difficulties to the user should be
given more weight than costs to authors; which in turn
should be given more weight than costs to implementors;
[...] Of course, it is preferred to make things better for
multiple constituencies at once.

Percentage of Web Pages Loaded by Firefox Using HTTPS

100%
— All users

80% NM

o)
bo
©
| -
(]
=
©
oo
=
=
o
£
>
©
=)
<t
Z 60%
wn
e
I
)
> 40%
o
[%2]
2 ©)
©
o
80
o 20%
o
Y
(@)
]
(=
[}
v
— nos
2013-2014 Va : : ' aala P020 2022 2024 \
Active Mixed Content Blocked) 2016 2018
Snowden leaks Iéets Enéry[it Rtelseased Eet(furs Conttexts Evetrywhlzl 2021 2024
Google boosts page rank for HTTPS ecure Lontext spec GeD;R pctl'Kp EsL;Jppor SWHA(A gld chrome address bar does HTTPS First Firefox address bar does HTTPS-First
TLS1 3|r(10-|§-r-|—) pang Firefox ships full HTTP§-Fizatin DO Firefox starts HTTPS-First roll-out
2015 | : a'""f Browsers phasing out 2023
worll indi i -
Intent to Deprecate Insecure HTTP 2017 isola g}?;zators and introduc Chrome upgrades mixed
Upgrade-Insecure-Requests Firefox warns on insecure logins Busi E!E?FSTSIID? content HTTPS
HTTP2 requires HTTPS WoSign/StartSSL distrusted social activities Chmmer(ej‘g‘;'sre:ﬁp S First
happens online

Outlook

Encrypting

What about local networks?

the
un-encryptable

What about regional differences?

CSRF

CSRF Interventions

SameSite SameSite= Lax By

attribute 2018 none 2019 default* 2022

in Chrome
W { 7 W/ 700 Y { D) } 77 T, { 770 NN\ NN

2016 Safari ITP - 2019 2020 Firefox
iti Fetch Cookie
partitioned d]
cookies by Metadata Protection
default (partitioned
Sec-Fetch by default)
headers

Presentation template for the timeline from Slidesgo and Ereepik.

15

http://bit.ly/2PfT4lq
https://bit.ly/2AB5gGa

Outlook

0 Caution: Chrome's default behavior is slightly more permissive than an explicit
SameSite=Lax, because it lets sites send some cookies on top-level POST requests. For

details, see the blink-dev announcement. This is intended as a temporary mitigation.

You'll still need to update your cross-site cookies to SameSite=None; Secure as

described in the next section.

https://web.dev/articles/samesite-cookies-explained#samesitelax_by_default

Lax By

What would it take to make
Default

lax-by-default more impactful?

https://web.dev/articles/samesite-cookies-explained#samesitelax_by_default

CHIPS &

Are Third Party Cookies really going

3rd Party
Cookies

to be deprecated?

XSS

& y Jjoernchen
‘ @joernchen

Basic Web security:

2019: Paste "<script>alert(1)</script>" in every input
field

2009: Paste "<script>alert(1)</script>" in every input
field

1999: Paste "<script>alert(1)</script>" in every input
field

1:24 PM - Jan 18, 2019 - Twitter for Android
775 Retweets 31 Quote Tweets 2,599 Likes

O n <& a

[Source: https://twitter.com/joernchen/status/1086237923652046849]

20

https://twitter.com/joernchen/status/1086237923652046849

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

Count

CVEs with
Insufficient
Information

CVEs with
Cross-Site Scripting

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

[Source: https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time]

21

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time

Browser-based
XSS defenses

Browser-based
XSS defenses

XSS Filters

“XSS auditor
XSS Filter in Chrome &
Internet n XSSAuditor
Explorer 8 2010 security 2016 removed

vulnerabilities”

X (D7 //)7////(/)7 /% 2220 27 { 7

2008 lE,Z\(*cS*ciclzpi(ger ~2012 Bugs in XSS 2018/9
& auditor can be
Chrome's used to _attack
XSSAuditor websites.

announced

Presentation template for the timeline from Slidesgo and Ereepik.

http://bit.ly/2PfT4lq
https://bit.ly/2AB5gGa

(*2008 - 1 2019) :;I?‘itl‘tg:‘j:han RegEx” is not good

(Cf. http://langsec.org/occupy/)

XSS Filters

You might cause more harm than good

http://langsec.org/occupy/

Content Security Policy (CSP)

by Gervase 2013 nonce & hash 2016- as

Markham support Chrome-only
X (//)7 }//»7///(/ D %//}W { 7

CSP3
2007 CSP 1.0 2014 Script gadgets, 2020
Scripts require strlf:t’—dyna
explicit mic-,
allow-listing external
hashes etc.

Presentation template for the timeline from Slidesgo and Ereepik. 26

http://bit.ly/2PfT4lq
https://bit.ly/2AB5gGa

*2007 -

<20% of websites have a CSP which
controls script

Content
Security Policy

90% of CSPs allow inline scripts

https://almanac.httparchive.org/en/2024/security#content-security-policy

Adoption must be very easy:
Low Complexity

Lessons learned We need with
existing content

Can we focus on Prevention rather
than Mitigation?

Outlook

Opt-In

Tr u Sted Disallowing strings assigned to innerHTML.
Types Requires minting of e.g., a TrustedString object.

Trusted

Types

has been highly effective. In the past
three years, for hundreds of complex
web applications that are built on
Google’s hardened and safe-by-
design frameworks, we've averaged
less than one XSS report per year in
total. As an example, Google Photos
was developed on secure-by-design
frameworks from the outset, and has
had no XSS vulnerabilities discovered

https://static.googleusercontent.com/media/publicpolicy.google/en//resources/google_commitment_secure_by_design_overview.pdf

Sanitizers

let clean = DOMPurify.sanitize(evil, options);

TOday div.innerHTML = clean;

Sanitizer

div.setHTML(evil);

API

Sanitizer

div.setHTML(evil, options);

API

What's left?

What if the Sanitizer could be applied globally, with a

Sanitizer

Such that innerHTML= was be implicitly rewritten to

AP I auto-sanitize like setHTML()?

What if this became opt-out, rather than opt-in?

HARDENING SECURITY INTERNALS

Hardening Firefox against

e Injection Attacks - The
Sanitizer Technical Details

A P I Christoph Kerschbaumer, Tom Ritter and Frederik Braun July 7, 2020

https://blog.mozilla.org/attack-and-defense/2020/07/07/hardening-firefox-against-injection-attacks-the-technical-details/

Summary

Lots of various initiatives

o [0)V.YA (o

Start with the carrots & opt-in security

deprecate

Expect long timelines.

Secure APIs,
safer web

Thank you

Questions & Comments

% Matrix
— @fbraun:mozilla.org

% Fediverse

— @@freddy@security.p|umbing
% E-Mail

_ freddy@mozilla.com

this technology could fall mto the right hands

Thank you

Questions & Comments

% Matrix
— @fbraun:mozilla.org

% Fediverse

— @@freddy@security.p|umbing
% E-Mail

_ freddy@mozilla.com

Slides

