
Towards Anonymous Chatbots with
(Un)Trustworthy Browser Proxies

Dzung Pham, Jade Sheffey, Chau Minh Pham, Amir Houmansadr
University of Massachusetts Amherst

{dzungpham, jsheffey, ctpham, amir}@cs.umass.edu

Abstract—AI-powered chatbots (ChatGPT, Claude, etc.) re-
quire users to create an account using their email and phone
number, thereby linking their personally identifiable information
to their conversational data and usage patterns. As these chatbots
are increasingly being used for tasks involving sensitive infor-
mation, privacy concerns have been raised about how chatbot
providers handle user data. To tackle this issue, we designed
and built ProxyGPT, a privacy-enhancing system that enables
anonymous queries in popular chatbot platforms. ProxyGPT
leverages volunteer proxies to submit user queries on their behalf,
thus providing network-level anonymity for chatbot users. The
system is designed to support key security properties such as
content integrity via TLS-backed data provenance and end-to-
end encryption while also ensuring usability and sustainability.
To the best of our knowledge, ProxyGPT is the first compre-
hensive proxy-based solution for privacy-preserving AI chatbots.
Our codebase is publicly available at https://github.com/
dzungvpham/proxygpt.

I. INTRODUCTION

The introduction of AI chatbots, including ChatGPT
(OpenAI), Claude (Anthropic), and Gemini (Google) [2, 23,
52], has significantly transformed how people interact with
artificial intelligence (AI) technologies. Powered by large lan-
guage models (LLMs) that are pre-trained on massive amounts
of data, these chatbots can perform various complex tasks
previously thought exclusive to humans, ranging from basic
functions such as writing and programming assistance [38,
65] to more complex and sensitive use cases like providing
medical, legal, or financial advice [11, 36, 37].

As chatbots become increasingly integrated into our daily
lives, privacy concerns regarding sensitive user data have
emerged [43]. Many popular chatbot platforms require users
to create verified accounts using email addresses or phone
numbers, effectively linking user identities to their platform
activities (Table I). This practice not only prevents truly private
conversations but also poses substantial privacy risks, as the
information extracted from these identity-linked chats can be
used to train LLMs or enable targeted advertising. ChatGPT,
for instance, includes a cross-chat memory feature where
machine learning algorithms extract information from differ-
ent chat conversations to personalize future interactions [54].
While some chatbots like Perplexity [60] allow anonymous use
of their services, users still need to sign up with their personal
information to access full, unlimited functionality.

TABLE I. IDENTITY VERIFICATION REQUIREMENTS BY SOME
MAJOR LLM CHATBOTS (AS OF DECEMBER 2024). TRAFFIC DATA

BETWEEN MARCH AND MAY 2024 IS FROM SEMRUSH.COM.

Chatbot LLM family Identity
required?

Estimated
monthly visits

ChatGPT [52] GPT Yes a,b 2.7B
Gemini (Bard) [23] Gemini Yes 170.8M
Claude [2] Claude Yes 57.5M
Copilot [41] GPT Yes 43.4M
Meta AI [40] Llama Yes 5.2M
Grok [75] Grok Yes 1.8M

Perplexity [60] Mixed No b 58.0M
YouChat [76] GPT No b 12.0M
HuggingChat [28] Mixed No b 2.4M
a ChatGPT recently no longer requires users to sign in [55], but we

find this mode to be unavailable for Tor and certain VPN locations.
b Requires signing in to access full functionalities.

Fig. 1. Overview of ProxyGPT. Users select volunteer proxies via the
coordinator. Proxies are randomly audited using a TLS data provenance
protocol. All communications (except between proxies and chatbots) utilize
AC protocols like Tor.

We argue that users should have the option for anonymized
access to chatbots specifically and to AI technologies broadly
for two key reasons. First, anonymizing chatbot usage can
enhance user privacy by decoupling sensitive conversational
data from user identities. Second, anonymity can promote trust
in AI by enabling people to freely express ideas and opinions
without fear of retaliation or surveillance from chatbot service
providers. Therefore, this work tackles the following question:

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2025
28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-9-0
https://dx.doi.org/10.14722/madweb.2025.23005
www.ndss-symposium.org

https://github.com/dzungvpham/proxygpt
https://github.com/dzungvpham/proxygpt
semrush.com

How can we design and implement a system that enables users
to access chatbots anonymously? We consider the following
properties to be essential to our design:

• User Anonymity: Chatbot providers and other system
participants should not be able to determine the true
identity of the query authors. This is our most important
goal.

• Content Integrity: Privacy providers should not be able
to tamper with user queries or respond with false in-
formation. Dishonest providers should be identified and
restricted.

• Least Privilege: The content of the queries and responses
should only be visible to relevant parties.

• Usability: Users and privacy providers should be able to
participate in our system with minimal setup and without
having to pay real money.

• Sustainability: The system should offer incentives for
privacy providers to participate and should scale with the
number of users and privacy providers.

• Resistance to Sybil and Denial-of-Service (DoS): The sys-
tem should have mechanisms to prevent users and proxies
from gaining an oversized influence and to mitigate DoS
attacks.

Achieving all of these objectives without any assistance
from service providers is challenging for high-level web ap-
plications like chatbots. Naively using a temporary or shared
account to hide one’s identity (e.g., using services like Ter-
oBox [71]) can run into many obstacles such as device
fingerprint leakage and usage rate-limiting. To address these
challenges, we design and implement ProxyGPT, a privacy-
preserving chatbot solution that takes a user’s query and se-
curely sends it to volunteer proxies who interact with chatbots
on behalf of the user (Figure 1). Our system includes a coor-
dinator that manages a directory of volunteer browser-based
proxies and facilitates user-proxy communications backed by
an anonymous communication (AC) protocol such as Tor [16].
The query and response content is end-to-end encrypted and
accessible to authenticated parties only. To prevent proxy
volunteers from tampering with the chatbot requests and re-
sponses, we integrate into ProxyGPT a TLS-backed data prove-
nance protocol [77] called TLSNotary [32], which generates
cryptographically verifiable proofs for the authenticity of proxy
responses. Proxies must regularly complete integrity audits
with TLSNotary to participate in our system. Due to the high
computational overhead of TLSNotary, we also incorporate
a simple reputation system where users can rate proxies to
further enhance trustworthiness.

ProxyGPT’s capacity and sustainability depend on the
number of proxy volunteers. The more proxies there are, the
more users we can serve and the more resilient our system is to
any disruptions. To incentivize proxy volunteers, we implement
a lightweight anonymous payment scheme based on Chaum’s
blind-signature electronic cash [7]. Proxies can obtain this e-
cash simply by completing our automatic integrity audits. The
e-cash can then be spent within ProxyGPT to ask more queries
without linking the spender to the original proxy who obtained
the e-cash. The use of integrity audits and e-cash also serve
as a DoS and Sybil mitigation.

To demonstrate the usability of ProxyGPT, we implement
a fully functional proof-of-concept consisting of two major

components. The first is a coordinator deployed as a Tor
hidden service, featuring a modern web interface for users to
securely interact with proxies. Users can enjoy private chat
experiences with different chatbots like ChatGPT and Claude.
The second component is a browser extension for Chromium-
based browsers that allows anyone to act as a proxy. Our
performance evaluation shows that ProxyGPT users receive
responses to their queries within 15 seconds on average. Proxy
volunteers, however, may take up to two minutes to complete
a single integrity audit, depending on networking conditions.
We additionally provide an extensive discussion of the various
privacy, security, integrity, and ethical aspects of our system.

To the best of our knowledge, our work is the first to offer
a comprehensive proxy-based privacy-enhancing solution for
AI chatbot users, fully considering crucial aspects like data
provenance and sustainability. In fact, we believe our system
is also the first application to combine proxying and TLS data
provenance for high-level web data. We envision ProxyGPT
as a platform that can augment the capability and popularity
of chatbot providers rather than circumventing them, thus
bringing their services to an even broader audience who might
feel hesitant due to privacy concerns.

II. BACKGROUND & RELATED WORK

In this section, we provide a brief overview of the current
state of user privacy in LLM chatbots and privacy-preserving
communication techniques, along with an overview of non-
repudiation for TLS-protected data.

A. User Privacy in LLM Chatbots

The privacy of LLM technology has been increasingly
under scrutiny from academia, industry, and the general public,
with various privacy risks identified in the LLMs such as
training data memorization [4, 48, 50], sensitive data in-
ference [43, 69], and unsatisfactory privacy reasoning [44].
Several works have attempted to address privacy leakage in
text data, particularly user’s chatbot prompts, by using LLMs
themselves to perform text sanitization [10, 63, 68, 70, 79].
Unlike these, ProxyGPT aims to hide user identities at the
application level (i.e. emails and phone numbers) and network
level (i.e. IP addresses). The most similar work to ours is
AnonChatGPT [1], which claims to allow users to interact
anonymously with OpenAI’s ChatGPT. The service provides
a regular web page that comes with various advertisements
as well as Google Analytics tracking scripts. It does not
appear to use the same web version of ChatGPT due to the
difference in response length and quality, and it does not
support multi-query conversations, resulting in limited utility
to users. Additionally, the service is not open-source and has no
formal guarantee that the responses truly come from OpenAI’s
ChatGPT. We believe that the service is a single server-based
proxy relying on OpenAI’s API which costs real money to
use (hence the ads). While AnonChatGPT’s intention is valid,
we believe it has much room for improvement with regard to
user privacy and trust. Stronger privacy-preserving inference
alternatives such as homomorphic encryption [8] cannot yet
support LLMs with hundreds of billions of parameters.

2

B. Anonymous Communications

Various anonymous communication (AC) protocols have
emerged over the last two decades to address the increasing
need for internet privacy [66, 67]. Most notable is The Onion
Router project (Tor), which features a decentralized network
of volunteer-based relays that proxy internet traffic for users
through a series of nodes while hiding the sender/receiver
information behind layers of encryption [16]. Unfortunately,
when applied to the problem of online LLM chatbots, AC sys-
tems like Tor do not automatically grant users any additional
privacy since many current LLM chatbots still require users to
sign in to identity-verified accounts even for their free service.
As a result, user identities are still transmitted in the clear to
the chatbot providers even when AC is utilized.

Closely related to our system are peer-based censor-
ship circumvention applications like Snowflake [3], Mass-
Browser [49], and Hola VPN [27]. These systems rely exten-
sively on browser-based volunteers who help proxy traffic for
other users. This approach is also adopted in our ProxyGPT
design, but instead of proxying arbitrary internet traffic, we
focus specifically on interactions with chatbots. The idea of
using proxies to enable anonymous access to web services has
also been explored in the early days of the web with systems
like Janus [22], Lucent [21], and UPIR [17], but they do not
consider or support untrustworthy peer-based proxies.

C. Provenance of TLS-protected Data

Communication over the Internet is widely protected with
the Transport Layer Security (TLS) protocol [64] which en-
ables a secure channel between clients and servers. TLS by
itself, however, does not allow users to prove the origin and
authenticity of their data to third parties since the servers are
not required to sign the data, and the users can forge the data
using the symmetric TLS session key shared with the server.
Proving the provenance of TLS-protected data is essential to
promoting trust in our ProxyGPT system as we can provide
users with formal guarantees that the responses they receive
from volunteer proxies indeed originate from the relevant
chatbot systems with the appropriate query context (e.g.,
correct queries, chatbot model types, decoding strategy, etc.).
Recent work such as DECO [77] and TLSNotary1 [32] has
demonstrated the feasibility of TLS-based non-repudiation via
a novel protocol involving a neutral verifier, secure multiparty
computation (MPC), and zero-knowledge proofs (ZKP). At a
high level, the protocol consists of three phases: First, the user
and the verifier jointly negotiate the TLS session key with
the server via a three-way handshake protocol to each obtain a
secret key share. Then, the user performs MPC with the verifier
to encrypt the user’s message without revealing the plaintext to
the verifier and sends it to the server. Finally, after committing
the TLS session data to the verifier, the user obtains the
verifier’s secret key share and generates (zero-knowledge)
proof about the data via selective redaction/revelation. While
this approach does not require any cooperation from the data
server and can keep the data private from even the verifier, it
has a high overhead when executed over the Internet due to the
MPC operations (Table III). Consequently, we cannot require

1TLSNotary was previously known as PageSigner, but has been recently
rewritten from scratch and modeled after the DECO protocol.

this protocol for every single proxy request in ProxyGPT and
must take a more economical approach.

III. PROXYGPT PARTICIPANTS AND THREAT MODELS

We present a high-level overview and threat model of the
participants in ProxyGPT, including chatbot providers, users
seeking query anonymity, and volunteer proxies (Figure 1).
We assume that these actors are malicious adversaries that can
take active actions to undermine the privacy service, uncover
the identities of query owners, or disrupt the functionality of
ProxyGPT.

A. Chatbot Providers

We refer to entities that provide LLM-powered chatbot ser-
vices as chatbot providers (e.g., OpenAI, Google, Anthropic).
Our threat analysis of chatbot providers is based on their
business models and usage policies. While they may not yet
operate at the level of nations or states, chatbot providers are
fully capable of monitoring user activities on their platforms,
controlling and mining any permitted generated content, and
limiting user access to their services.

1) Usage: Chatbot providers can offer users two methods
for interacting with their services: a graphical user interface
(GUI) and an application programming interface (API). The
former method typically includes a free tier with basic func-
tionalities and a paid tier with more features. The latter is usu-
ally charged per the number of input and output tokens used.
Payment methods are often restricted to traditional electronic
payment systems (e.g., debit/credit cards), and support for
(pseudo)anonymous payment schemes like cryptocurrencies is
still limited.

Chatbot providers can require users to sign up for an
account with their e-mail and/or other sensitive personal data
such as phone numbers before they are allowed access to
the chatbot services (Table I). This private information is
typically used for security purposes such as human verification
or account recovery. To use the GUI, users often need to log
in to their accounts and may periodically be asked to complete
bot prevention challenges. To use the API, users need to use
sufficiently funded unique API keys.

2) Mining User Conversation: Content generated on the
chatbot platforms can be incorporated into the training of the
chatbots, which are known to be prone to verbatim memo-
rization [4] and training data leakage [48]. This content can
also be analyzed to create a profile of the user to provide a
more personalized chat experience such as customized chatbot
responses or recommendations [54]. Previous research has
demonstrated that a great deal of sensitive information can
be inferred from user web search logs [31] and chatbot
prompts [43, 69]. Users may be offered the ability to opt out
of these features, but this depends on the chatbot services.

3) Modifying Chatbot Responses: Chatbot providers can
easily modify the chatbot responses. For instance, they can
inject into the chatbot responses special watermarks that are
not easily detectable by humans but can be identified algorith-
mically [35]. One proposed watermark works by coercing the
statistical distribution of the tokens generated by the chatbots
into a uniquely distinguishable “shape”. These watermarks can

3

hypothetically be used to link a user and their proxied chatbot
responses, particularly when the users reuse the watermarked
text in their regular non-proxied queries.

4) Activity Restriction: Chatbot providers can impose us-
age limits (e.g. number of queries per hour) as well as restrict
access for any user, regardless of whether the user actually
violates any usage terms or policies. In reality, we expect
the chatbot providers to be reasonable with our proxy-based
privacy approach since the act of proxying by itself does not
violate any terms of service (Section VII-D), and arbitrarily
restricting users without a justifiable reason can negatively im-
pact the reputation of the chatbot providers. Other restrictions
may involve dropping queries or delaying responses.

B. Proxies

Proxies are volunteers who interact with chatbots on behalf
of ProxyGPT users. Therefore, a proxy needs to use its service
identity to interact with chatbots and requires access to the
query plaintext.

1) Dishonest Service: Since chatbot services may charge a
non-negligible usage fee (e.g. for API access), proxies might
be incentivized to reduce costs by modifying the original query
or the API settings such as limiting the number of input/output
tokens. It is also possible for proxies to provide a completely
dishonest response using cheap but subpar chatbots or even
random information. More maliciously, proxies can intention-
ally respond with inappropriate content or with instructions
or code that can compromise the security and privacy of
ProxyGPT users (e.g., cross-site scripting).

2) Collusion: Proxies and chatbot providers may collabo-
rate in an attempt to identify the true owners of the queries. For
example, proxies can inform chatbot providers of the queries
received from users along with any relevant metadata. Chatbot
providers can then attempt to find the true owners of the
queries (e.g., via stylometry with previous chat logs [46]).
Chatbot providers may pose as proxies themselves to directly
obtain such information.

C. Users

ProxyGPT users are those who wish to use chatbot services
anonymously. By design, any information related to their
identity such as their chatbot accounts and IP should not be
revealed to chatbot providers, proxies, or even trusted third
parties (Section III-D).

1) Malicious Queries: Similar to proxies responding with
bad content, users can also ask malicious or inappropriate
queries with the intention of harming proxies. For example,
improperly validated queries might lead to attacks such as
cross-site scripting.

2) Collusion: Users may collude with chatbot providers
to identify proxies. For instance, chatbot providers can pose
as ProxyGPT users and ask uniquely identifiable queries. By
tracking the accounts or API keys that submit these finger-
printed queries, they can reveal the proxies involved.

D. Trusted Third Parties

There are two types of trusted third parties (TTP) partici-
pating in ProxyGPT, namely the coordinator and the notary.

Fig. 2. Query proxying process. Users can send queries “directly” over Tor
to a server-based proxy or via the coordinator to a browser-based proxy. A
form of payment may need to be sent to the proxy or the coordinator.

1) Coordinator: The coordinator’s main responsibilities
include managing a directory of proxies, helping users discover
proxies, and facilitating communication between users and
proxies (similar to the “central bridge” in Snowflake [3]
and the “operator” in MassBrowser [49]). Both users and
proxies only need to trust that the coordinator faithfully follows
ProxyGPT’s protocol without having to share the content of
their chatbot queries or any identity-linked information like
IP. Any new proxy must register with the coordinator and
complete a verification process before it can participate in
ProxyGPT. Users can contact the coordinator for a list of
proxies and establish either a direct or a coordinator-facilitated
communication channel with chosen proxies. To promote trust-
worthiness, the coordinator performs regular audits with the
help of the notary.

2) Notary: The notary’s primary job is to verify and no-
tarize the TLS-based communication session between a proxy
and a chatbot service using a protocol like DECO [77] or
TLSNotary [62]. The notarized session can then be indepen-
dently verified by other parties such as the coordinator or the
users themselves. By design, the information visible to the
notary/verifier only includes the server’s hostname and any
session data that has been selectively revealed by the proxies.
As such, the identities of proxies can remain hidden, while the
text content of the chatbot conversation will need to be revealed
for verification purposes. We assume that the notary does not
collude with proxies to produce inauthentic notarization.

IV. SYSTEM OPERATION DETAILS

In this section, we describe two important operations in
ProxyGPT: submitting a query (Figure 2) and verifying a proxy
(Figure 3).

A. Query Submission

1) Proxy info request: A user who wants to use ProxyGPT
first anonymously requests a list of available proxies from the
coordinator. The coordinator retrieves its directory of proxies,
filters for those that are recently active (e.g. last contact within

4

the last five minutes), and then replies to the user with the
proxies’ contact information such as their onion addresses or
ProxyGPT pseudonyms along with some performance statistics
to help users choose.

2) Proxy selection: Users are provided with various proxy
performance statistics calculated periodically by the coordi-
nator to aid the proxy selection process. These include mean
response time, average daily request volume, and downvote
rate (Section V-B6).

3) Communication with proxy: Using the selected proxy’s
contact information, users can establish a “direct” connection
with a chosen proxy via an AC protocol like Tor. If the
connection succeeds, users can proceed to send their queries
to the proxy along with a form of payment. If users cannot
directly connect to the chosen proxy, such as in the case of
browser proxies, they can instead communicate indirectly over
the coordinator, which acts as a dropbox for the queries. To
prevent the coordinator from seeing the query content, the
query content is end-to-end encrypted.

4) Rating proxy response: Since a proxy may fabricate
its response (Section III-B1), users should ideally be able to
request the proxy to provide a formal cryptographic proof
of the response’s authenticity via a protocol like DECO or
TLSNotary. However, due to the high communication overhead
of these protocols, we limit the proof requirement to audit
requests from the coordinator only. Users can instead provide
a rating of the proxy responses, specifically by downvoting bad
responses, which will impact the reputation of the proxies.
(Alternatively, users can perform a manual cross-check by
asking the same query to other proxies and comparing the
results, but this is more costly.)

5) Payment: Certain proxies may require users to pay
for their services to offset the operational costs. OpenAI’s
GPT, for example, imposes a fee for every input and output
token for its API. To preserve privacy, users can pay with
cryptocurrencies, such as those with low transaction fees.
However, we recognize that requiring users to pay with real
money will likely hinder the adoption of ProxyGPT. As such,
we also include an alternative payment method where users
can “pay” by simply volunteering to proxy for others. For
every successfully validated verification request, proxies can
obtain from the coordinator a “certificate” that can be used to
pay for ProxyGPT. This payment model applies to browser-
based proxies who can make free requests to chatbots via
a web-based UI. To avoid associating a proxy’s certificate
with their own queries, we use Chaum’s blind-signature-based
electronic cash scheme [6, 7] to allow the proxy to privately
use their certificate without anyone learning the identity of the
certificate’s owner, even the coordinator.

B. Proxy Registration & Audit

A proxy must register itself with the coordinator and com-
plete an integrity audit before it can participate in ProxyGPT:

• Registration request: The proxy sends the coordinator a
unique ‘pseudonym’ for communication purposes (e.g.,
onion address in Tor or a public key), along with a list
of constraints such as the supported chatbots.

• Verification challenge: Upon receiving a registration re-
quest, the coordinator prepares and sends the proxy a

Fig. 3. Proxy auditing. The coordinator sends the proxy a challenge
query disguised as a normal one. After obtaining the proxy’s response, the
coordinator requests the proxy to participate in a TLS data provenance protocol
like DECO to ensure the original query and response are authentic.

verification challenge (Figure 7). The challenge should
also be answered within a reasonable time frame (e.g.,
10 minutes).

• Verification response: The proxy first obtains the re-
sponses from the target chatbots. To prove authenticity,
the proxy then participates in the TLSNotary protocol
with a notary. After that, it sends the responses along with
the proof to the coordinator. The proof should hide any
sensitive information that may reveal the proxy’s identity
(Figure 8).

• Registration notification: The coordinator verifies the
proxy’s responses and proof and notifies the proxy of the
result. If the proxy fails, it must restart the registration.

The registration process thus serves two purposes: to
ensure that proxies are capable of correctly performing data
provenance protocols and to mitigate DoS attacks. However,
a registered proxy can still mishandle user requests later on.
To prevent this, the coordinator also performs regular random
audits of the proxies (Figure 3) by sending them special
challenge queries specifically generated to prevent proxies
from detecting when an audit is happening (Section V-A3). A
proxy with pending audit queries will no longer receive new
genuine user requests until the audit queries are processed.
After the proxy sends the coordinator the chatbot responses to
the audit queries, the coordinator then requires the proxy to
provide a TLSNotary proof of the responses. The proxy only
needs to make a request to the chatbot providers to retrieve the
relevant conversation for the proof without having to redo the
audit queries. A proxy that fails this process will be banned
from ProxyGPT and will have to re-register. A proxy who
succeeds will be rewarded with our e-cash that can be used to
ask queries with ProxyGPT.

V. IMPLEMENTATION DETAILS

This section presents various implementation choices for
our ProxyGPT proof-of-concept. We open-source our code at
https://github.com/dzungvpham/proxygpt.

5

https://github.com/dzungvpham/proxygpt

A. Coordinator & Notary

1) Deployment: We deploy the coordinator as a Tor hidden
service [16] on an Ubuntu virtual machine and implement it
with the Flask web framework [58], Gunicorn Python WSGI
server [9], and Nginx as a reverse proxy [19]. It exposes several
REST endpoints for retrieving proxy info, registering proxies,
sending/receiving queries and responses, etc., and maintains
a MySQL database that stores proxy information such as
pseudonyms, registration status, and performance metrics,
along with (E2EE) user-proxy communication data facilitated
by the coordinator. All communication data is automatically
deleted after 30 days.

For the notary, we deploy a Rust-based TLSNotary server
(v0.1.0-alpha.5) [62] in a separate Ubuntu virtual machine
along with a noVNC-based WebSocket (WS) proxy [51]. We
choose TLSNotary as it is, to our knowledge, the only open-
sourced, browser-friendly, and actively maintained framework
that provides TLS data provenance based on zero-knowledge
proof [32]. Unlike the coordinator, the notary is hosted pub-
licly due to the prohibitive communication overhead when
performing the TLS data provenance protocol over Tor. As a
result, proxies need to use a faster AC system such as Mullvad
VPN [45] to be able to execute TLSNotary while also protect-
ing their privacy. The WS proxy is needed because browser-
side code cannot open raw sockets required for TLSNotary.
(ProxyGPT proxies can also use their own local WS proxy
instead of the publicly hosted one, but this requires an extra
setup step.)

2) User Interface: The coordinator provides a simple and
convenient Tor website for users to discover proxies and make
their proxy requests (Figure 4). The website’s design is influ-
enced by existing chatbots, particularly ChatGPT. Users can
easily switch between ChatGPT and Claude, engage in multi-
query conversations, as well as downvote individual responses.
To preserve the styling and formatting of the original chatbot
responses while also preventing cross-site scripting attacks
(XSS), we use the same styling framework from ChatGPT and
Claude and sanitize the responses with DOMPurify [13].

To submit a query in ProxyGPT, the client-side logic
generates an Elliptic Curve Diffie-Hellman (ECDH) and an
Elliptic Curve Digital Signature Algorithm (ECDSA) key pairs
on curve P-256 for encrypting the query and decrypting the
response end-to-end while also ensuring authenticity. The
client’s payload is encrypted using an AES-GCM-256 key
derived from the private ECDH key and the chosen proxy’s
public ECDH key. The client keys are not reused across
different queries to prevent them from being linked together.
In addition to the query content, extra options like which
chatbot to use and which thread to continue are encrypted and
thus not accessible even by the coordinator. All cryptography
operations use the browser-native WebCrypto API [73].

3) Proxy Audit: For every real user request to a proxy,
the coordinator inserts its own query (Figure 7) disguised as
a regular user request with a fixed probability (e.g., 25%) so
that on average, each proxy would receive 4-6 fake queries
before hitting the chatbot providers’ hourly rate limit. Each of
these fake queries in turn has a 50% chance of turning into a
TLSNotary verification challenge. This data poisoning strategy
is designed to confuse the proxies and prevent them from being

Fig. 4. User interface of our ProxyGPT website (screenshot taken from within
the Tor browser). Users can switch between chatbots, select which proxy to
use, engage in multi-query conversations, etc.

able to distinguish between regular and audit queries based on
the network/temporal pattern or the query content.

To further reinforce content indistinguishability, we ran-
domly source the challenges from various question-answering
platforms (e.g., Reddit, Quora, StackOverflow) and real user
prompt datasets (e.g., WildChat [78]). To prevent proxies
from simply checking if the seeds can be found from such
sources, we prompt a local LLM like LLama-3.1-8B-Instruct2
to stochastically rewrite the seeds with different wordings,
topics, or languages. We empirically verify our method via
an experiment: We simulate a proxy’s knowledge with a
small dataset of 800 WildChat prompts, 100 unknown audit
prompts, and 100 known audit prompts. We then fine-tune a
DeBERTaV3 model [26] via cross-validation on this dataset
to predict whether a prompt is an audit and test on another
dataset with the same composition but different content. The
model only manages to achieve 0.5-0.6 test AUC, which is not
better than random guessing. An alternative design is to drop
end-to-end encryption for user queries, which would allow the
coordinator to bypass the generation process above and audit
actual user queries, but this would require users to put even
more trust in the coordinator.

For verifying TLSNotary proofs, the coordinator hosts a
local NodeJS server [56] that runs the TLSNotary Javascript
API. As the API is written for the browser environment, to
enable it in NodeJS, we use a virtual DOM and “monkey-
patch” the browser-specific Web Worker API with a cross-
platform alternative to load local files. After establishing the
validity of the proof, the coordinator compares the original
query and response with the selectively revealed text contained
in the proof and checks the structure of the JSON response to
ensure that there is no malicious manipulation.

2https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

6

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

Fig. 5. Pop-up page for ProxyGPT’s browser extension. It shows some basic
statistics, allows users to easily turn the extension on/off and limit the number
of proxy requests per hour, and displays the earned e-cash.

B. Proxies

1) Overview: We implement a browser extension for
Chromium-based browsers using the ManifestV3 extension
standard [24] to enable users to become proxies with minimal
setup (Figure 5). The extension programmatically interacts
with the chatbot websites using the provided GUI components
in the same way as regular users do. Extension users must log
in to the chatbot websites first and clear any bot detection
mechanisms. To prevent Chrome from pausing unfocused
browser tabs and ensure a smooth proxying process without
hindering normal chatbot usage, extension users should ded-
icate a separate browser application window to each chatbot
website without including additional tabs. Tor must also be
installed and running in the background to enable communi-
cation between proxies and the coordinator (simply leaving the
Tor browser open suffices).

2) Setup: Similar to the users, each proxy must generate
an ECDH and ECDSA key pair, and then register with the
coordinator using the generated keys. To store the private
keys on the browser side, we set the Web Crypto API to
generate them with the extractibility feature disabled (i.e., not
exportable to a non-binary format even with Javascript), then
store the entire binary private key object using the IndexedDB
API [12]. The public keys, on the other hand, are exported to
the SPKI format and base64-encoded.

Once registered, the proxy needs to authenticate itself
by presenting a valid signature for a random nonce sent by
the coordinator using the proxy’s private ECDSA key. Upon
successful validation of the proxy’s signature, the coordinator
issues to the proxy a signed JSON Web Token (JWT) [30] that
confirms the proxy’s authenticity. The proxy can subsequently
present the JWT to the coordinator to retrieve new queries and
submit responses until the token’s expiration.

3) Handling queries: The proxy processes each query one
at a time to avoid overloading the chatbots with several queries
simultaneously. Each query is decrypted using the shared AES-

GCM-256 key derived from the proxy’s private ECDH key
and the query owner’s public ECDH key. For queries that are
follow-ups of existing chat threads, the proxy must validate
the ownership by verifying a signature produced by the query
owners of the IDs of the latest queries in the threads. Note that
the coordinator does not know whether a query is a new thread
or part of an existing one since the payload is encrypted. The
volume of queries served can also be controlled by the proxy.

In order for the proxy to be able to support multiple
different chatbot websites while also maintaining consistency
with real user experiences, we use a unified GUI-based query
submission flow consisting of the following steps:

a. Create/Select chat thread: For a new query, locate the
‘new chat’ button/link. For a continuing query, locate the
button/link for opening the chat thread with the relevant
thread ID in the chat history. Click on the located element
and wait ≈ 3 seconds for the website to load.

b. Find input area and enter query: The input area is either a
textarea or a div with the attribute “contenteditable” set to
true. After inputting the query into the input area, dispatch
any relevant input event to make sure the internal state of
the website is updated correctly, then wait 1 second for
the submit button to appear.

c. Find submit button and click: Once the submit button
appears and is usable, click on it and wait for 3 seconds.

d. Wait for response: Keep checking for DOM elements that
indicate results are still streaming every 1 second.

e. Check for error: Chatbot providers may return server-side
errors or enforce a rate limit

f. Retrieve query result: Once streaming is done, locate
the DOM element corresponding to the latest message
from the chatbot and extract the content (along with the
generated thread ID in the updated URL).

Once the response has been retrieved, the proxy encrypts it
with the derived AES key above and sends it to the coordinator.
If any step above fails, the whole process is retried after a
timeout of 1 minute.

4) Audit: Proxies handle verification challenges using TLS-
Notary’s WebAssembly-based JavaScript API (which we fur-
ther customized to enable easier redaction of sensitive infor-
mation in JSON format). Proxies will participate in the three-
way TLS protocol with our publicly hosted TLSNotary server,
possibly over a VPN like Mullvad but not Tor due to the
increased latency (once TLSNotary becomes sufficiently fast,
Tor can be utilized to better protect proxy identity during
audits). To connect to the chatbot server, proxies can either
use our public WS proxy or host their own local WS proxy
like noVNC’s Websockify [51] to better preserve their privacy.
Redacting sensitive information in the proof record involves
hiding all HTTP request headers (the Request-URI in the
Request-Line also needs to be partially hidden to avoid leaking
the conversation ID) as well as parsing the JSON response to
reveal only the relevant JSON structure and the content of
the chatbot conversation (Figure 8). During this audit stage,
proxies will not be able to serve any user requests.

5) E-cash: We introduce an incentive mechanism where
proxies can obtain a ProxyGPT e-cash from the coordinator
by successfully completing integrity audits. We implement an
e-cash library based on Chaum’s RSA-based blind signature

7

scheme [6, 7] using NodeJS’s native ‘crypto’ library with
guidance from RFC 9474 [14]. To obtain e-cash, proxies first
generate an appropriate random message, blind it using the
coordinator’s e-cash public key, then attach the blinded result
to the audit responses. If the audit passes, the coordinator signs
the blinded message using their private e-cash key and sends
the signature back to the proxy. The proxies can now unblind
the coordinator’s signature to obtain a different signature that
is valid but unknown to the coordinator. The resulting signature
and the generated random message together form the e-cash
(Figure 5). This scheme thus allows ProxyGPT e-cash to be
spent without revealing the identities of the original owners.
When a coin is presented as payment, the coordinator must
validate and verify that the coin has not been used.

6) Proxy Statistics: We present the following (hourly ag-
gregated) statistics to users to help them choose proxies:

• Service Level Agreement (SLA) compliance rate: We
define the SLA as a proxy finishing a user request in
less than 1 minute. The rate of SLA compliance can let
users know how likely they will get a response within 1
minute.

• Mean time to respond (MTTR): MTTR is defined as the
time it takes for a proxy to respond, averaged over all
finished queries. Unprocessed queries are not included.

• Load: We calculate the average volume of requests sent
to a proxy per day as well as the volume in the last hour.
This shows how active or busy a proxy is.

• Downvote rate: Users can report or downvote bad re-
sponses to help other users avoid low-quality proxies.
This simple mechanism complements our more expensive
cryptographic proxy verification technique.

VI. EVALUATION

In this section, we evaluate our ProxyGPT proof-of-
concept, focusing on its latency. The coordinator is imple-
mented as a Tor hidden service with a user-friendly website
(Figure 4), the notary as a TLSNotary server, and the proxy
as a Chrome extension (Figure 5).

A. Query latency

We send 30 different queries3 via our ProxyGPT website to
a ChatGPT proxy running ChatGPT 3.5 in the Google Chrome
browser on an Ubuntu 20.04 machine with 16GB of memory.
We measure the time taken for the following:

• User delivering query to proxy: Involves the user submit-
ting a request to the coordinator, who verifies the chosen
proxy’s identity and sends the query to the proxy.

• Proxy interacting with ChatGPT: Involves the proxy
interacting with ChatGPT’s website and notifying the
extension’s backend of the query results.

• Proxy delivering response to user: Involves the proxy
sending the result to the coordinator, who verifies the
proxy’s identity and sends the response to the user.

Each query has the format “Tell me about <subject>
in (one | two | three) paragraph(s)”, where the subjects

3This number is sufficient given our small margins of error calculated with
a 95% t-distribution confidence interval (Tables II and III)

TABLE II. QUERY LATENCY WHEN USING PROXYGPT WITH
CHATGPT (SAMPLE SIZE = 30).

Activity Avg. time
(seconds)

Standard
deviation

Margin
of error

Percent.
of total

User delivering
query to proxy 3.77 1.79 0.67 24.47%

Proxy interacting
with ChatGPT 8.30 1.24 0.46 53.86%

Proxy delivering
response to proxy 3.34 1.98 0.74 21.67%

Total wait time
for user 15.41 3.58 1.34 100%

Estimated overhead
vs. regular ChatGPT ≈ 10 N/A N/A ≈ 200%

800 1000 1200 1400 1600
Response length (characters)

0

5

10

15

20

25

Ti
m

e
(s

ec
on

ds
)

Latency vs Response Length
Time Legend

User to Proxy
Proxy Interaction with Chatbot
Proxy to User
Total Wait Time

Fig. 6. Breakdown of query latency vs ChatGPT’s response length (in
characters). Pearson’s correlation coefficient between total wait time and
response length is 0.4487, indicating a moderate positive correlation.

are chosen from a list of countries in the world, and the
number of paragraphs is to induce responses of varying lengths
(roughly between ASCII 800-1600 characters). Overall, it takes
15.41 ± 1.34 seconds on average for the user to receive the
response for a query, with roughly half of the delay (8.3±0.46
seconds) coming from the proxy’s interaction with ChatGPT
UI and the remaining half (≈ 7.1 seconds) coming from the
Tor network communication between users, coordinator, and
proxies (Table II). Of the 8 seconds spent interacting with
ChatGPT’s UI, about 2-3 seconds are idling time that we
set to ensure that all UI operations and side-effects are fully
propagated throughout ChatGPT website’s internals correctly,
while the remaining 5 seconds are the time for ChatGPT to
return a complete response. Thus, using ProxyGPT incurs an
additional 200% latency overhead compared to using ChatGPT
normally. The longer the length of ChatGPT’s response, the
higher the latency (Figure 6), as the proxy has to spend more
time waiting for the full response. From these results, we
estimate that a single proxy can serve 6-8 queries per minute,
and a single user can ask 3-4 queries per minute.

8

TABLE III. AUDIT LATENCY (IN SECONDS) WITH TLSNOTARY AND
CHATGPT DATA (SAMPLE SIZE = 10 FOR EACH LOCATION).

Distance from
notary (km) Mean Median Max Standard

deviation
Margin
of error

≤ 1 (no VPN) 101.8 103 104 2.8 2.0
120 107 106 113 3.4 2.4
200 111.6 112 116 2.7 1.9
555 129.2 130 131 2.2 1.6
800 130.2 130 131 0.8 0.6
>800 Timeout N/A N/A N/A N/A

B. Audit latency

We also run a small-scale measurement of the total amount
of time for a proxy to finish integrity audits with TLSNotary
and ChatGPT. Note that proxies have to use a VPN instead of
Tor to participate in the TLSNotary protocol due to its high
overhead. To simulate the physical distance between a proxy
and the notary server, we use Mullvad VPN [45] and run 10
audits for each chosen VPN server. On average, we find that
the amount of time it takes to execute a single TLSNotary
audit is typically between 100 and 130 seconds, with a mod-
erate amount of variability depending on the proxy’s network
conditions and available hardware (Table III). Longer distances
between the proxy and the notary lead to longer latency and
can cause the proxy to be unable to send its MPC-encrypted
message to the chatbot server due to timeout. In an actual
production deployment, the notary can be an independent
service with multiple servers deployed globally to increase
coverage. More speed optimizations for TLSNotary are also
under active development as it is still a nascent technology.

VII. SECURITY ANALYSIS & ETHICAL CONSIDERATIONS

Here, we examine potential vulnerabilities concerning the
privacy, integrity, and other practical security aspects of Pro-
xyGPT, along with ethical issues arising from its use.

A. Privacy

1) User identity: ProxyGPT protects user identity at the
network level by separating the query from the source and
relying on voluntary or paid proxies to interact with chatbots
on the query author’s behalf. This, however, does not guarantee
absolute anonymity for users. Since we rely extensively on AC
systems, the privacy protection offered is only as good as the
strength of the employed AC protocols. Tor in particular is
known to be vulnerable to adversaries capable of global traffic
analysis [34]. Swapping out Tor for stronger AC systems is
possible but will come at the expense of latency, which can
be a deal-breaker for many chatbot users.

Another vector for determining user identity is via the
content of the queries submitted. As discussed in Section III-A,
chatbot providers can hypothetically analyze their database
of known users to build a profile for each person, then try
to match queries to their author via stylometry or machine
learning techniques [46, 59]. More craftily, they can inject
special watermarks into their chatbot responses and later try
to find these watermarks in any known users’ queries to link
the anonymous queries and the authors together [35]. This
can occur if users accidentally copy-paste the watermarked

responses into their regular non-private chatbot conversations.
To prevent this attack vector, users could locally perform
query rewriting and sanitization [10] before requesting ser-
vice from ProxyGPT. However, existing text anonymization
approaches [61] such as sensitive/identifying term redaction
and generalization do not consider the utility of the queries and
are not efficient enough for interactive conversations. Whether
it is possible to anonymize chatbot queries effectively remains
an open challenge that we leave for future work.

2) Proxy identity: While ProxyGPT users can enjoy the
network-level identity separation, proxies are still required to
personally interact with chatbots using their own accounts
or API keys. Consequently, hiding the identity of proxies is
practically impossible if proxies have to deliver users’ queries
without any modification. As mentioned in III-C, chatbot
providers can either collude with users or disguise themselves
as users to ask uniquely identifiable queries. One possible
defense that proxies can employ is to obfuscate the query
content to reduce the chance of success for such linkage attack,
but this has no formal guarantees. Even if the query content can
be perfectly obfuscated, another vector of attack for chatbot
providers is to passively analyze account activities or actively
probe our system (e.g., sending ProxyGPT queries to proxies
at specific times). Chatbot websites can also try to detect the
presence of our extension, e.g., by checking for web-accessible
resources or modifications from the extension [33].

B. Integrity

1) Proxy integrity: The use of TLSNotary to perform
regular integrity audits can prevent proxies from misbehaving
to an extent but does not completely rule out such foul play.
A malicious proxy could try to distinguish audit queries from
real user queries and only act honestly when handling the
former, but this can be practically prevented with careful query
generation (Section V-A3). Assuming audit queries are indis-
tinguishable from regular ones, we can model this scenario as
a 2-player non-cooperative game [47] where given a query, the
proxy can choose to respond honestly with probability ph and
the coordinator can choose to audit with probability pa (see
Appendix A for full analysis).

2) Chatbot integrity: Generally, it is entirely within chatbot
providers’ rights to modify how their chatbot service behaves.
They might intentionally provide subpar service to users sus-
pected of participating in ProxyGPT as a punitive measure.
Detecting such behavior can be challenging and would require
collaboration among proxies to share and analyze their chatbot
usage statistics together, which also needs to be done in a
privacy-preserving manner. However, this risk should be low
given the potential impact on the services’ reputation if such
a practice was discovered.

C. Security

1) Key management: Securely storing sensitive information
on the browser side is generally difficult to achieve. Our
browser extension relies on current native browser technolo-
gies, particularly the Web Crypto API and the IndexedDB
API, to generate and store private keys locally on the browser
side [12]. While this approach prevents the private keys from
being exported to more accessible formats in JavaScript, it does

9

not prevent malicious actors with access to the proxy’s browser
from using the key or extracting information from the raw
binary using other tools. If a cross-site scripting (XSS) attack
is successfully executed on the extension, then the private keys
can be stolen and abused. To reduce the risk of XSS, our
implementation sanitizes any inputs coming from users and
proxies before displaying them with DOMPurify [13].

2) DoS and Sybil attacks: In addition to the built-in DoS
prevention mechanisms in the Tor network [72], our give-and-
take e-cash economy can also be considered a form of DoS
defense thanks to its reliance on completing TLSNotary-based
audits, which have high computational costs. Sybil attacks,
however, are harder to prevent due to the anonymous nature
of ProxyGPT. If a dedicated actor floods our system with a
large number of proxies, they can collect a large number of
e-cash over an extended period of time, which can then be
used to ask many queries. Consequently, they can collect a
sizeable volume of user queries as well as chatbot responses
and also affect the reputation and load of other proxies. The
use of e-cash and TLSNotary can prolong the time it takes for
an adversary to achieve such an influence on our system.

D. Ethical Considerations

1) Automation: Currently, most chatbot providers do not
permit automated usage of their chatbot services except for
API usage. As such, our browser extension’s site manipulation
could be considered a violation. However, these providers also
delegate all rights to the content created on their platform
to the users, from whom we explicitly obtain permission to
extract their data. Furthermore, our implementation is a proof-
of-concept for research purposes only, not for production or
commercial use. Our give-and-take economy model via our e-
cash system also minimizes the burden on the chatbot services.
A full discussion of the legality of automated data extraction
is beyond our paper’s scope, but we believe that achieving
privacy is as “justifiable” as the chatbot providers’ scraping
(copyrighted) web data for training LLMs [25].

2) Misuse: As with any anonymity services (or any tech-
nology in general), ProxyGPT can be exploited by malicious
actors to execute inappropriate or even illegal activities. For
instance, bad users can ask the chatbots how to create malware
or organize a phishing campaign without having to create an
identity-verified account [53]. Such queries may accidentally
implicate the proxies, especially since proxy identities can be
uncovered by the chatbot providers. We believe, however, that
chatbot providers should be primarily responsible for aligning
their chatbots with human interests and preventing them from
responding to bad queries in the first place [57]. While it is
still possible to “jailbreak” chatbots and bypass such safety
mechanisms (e.g., via adversarial modifications to the query
content [74]), aligning chatbots directly tackles the root cause
of misuse and is also more achievable than policing human
online activities.

3) Beyond chatbots: While the design of ProxyGPT is
focused on chatbot services, our approach is broadly appli-
cable to any web applications that require user identities. For
example, on the LinkedIn platform [42], if user A views user
B’s profile, B will know that A has done so unless A changes
to a stricter privacy setting that limits some of A’s available

features. User A can instead use a proxy-based system to
view B’s profile without revealing themselves. The use of such
technology, however, must be considered carefully on a case-
by-case basis to avoid harming the privacy of other users.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present ProxyGPT–a novel proxy-based
privacy-enhancing system for AI chatbot users that leverages
the power of volunteers to separate a user’s identity from their
queries. Our system utilizes TLSNotary for proxy integrity and
Chaum’s e-cash for sustainability. Below, we detail possible
next steps for our system. We hope that our work will inspire
chatbot providers to build their services with privacy at the
forefront, especially as this powerful technology becomes more
intertwined with everyday lives.

Latency improvements: ProxyGPT’s current query latency
is dominated by two major components: the AC protocol’s and
the chatbot service’s latency. While our implementation relies
on Tor, which can be rather slow, our design is not restricted
to Tor. Faster alternatives such as those based on the recent
MASQUE protocol [15, 29] can potentially be used to further
reduce the AC’s delay (once the technology is ready). We can
further reduce the perceived delay by transmitting parts of the
chatbot response instead of waiting for it to be completely
generated, similar to how current chatbots stream the responses
token by token, but in larger chunks. Query latency is also
affected by integrity audits which occur randomly during
proxying. Reduction in audit latency depends on improvements
in the underlying data provenance protocol, which is beyond
the scope of our paper. There is much active research focusing
on optimizing data provenance speed [5, 18, 39], but few
public-ready implementations.

Trust assumptions: ProxyGPT currently assumes that the
coordinator is a TTP and relies heavily on the coordinator
for proxy management and user-proxy communication. While
this centralized approach has several advantages such as easier
implementation and proxy integrity checks, the coordinator
also becomes a single point of failure for both system integrity
and availability. Due to the difficult-to-verify nature of chatbot
response data, fully decentralizing the functionalities of the
coordinator while efficiently ensuring proxy integrity can be
challenging. That said, we believe a truly decentralized Proxy-
GPT is worth investigating as it has the potential to promote
user trust further. It could be argued that with our system,
users would simply be moving their trust from the service
providers to the proxies and the coordinator. However, we
note an important distinction: ProxyGPT users only entrust our
system with their chat conversation content, not their identities.
Without ProxyGPT’s identity separation, users would always
be identifiable by chatbot providers, thus forcing them to trust
that this information will never be exploited.

Additional features: We intend to incorporate more chat-
bots such as Gemini and Meta AI, as well as enable multi-
modality with files, images, and audio chat. We also plan to
include an in-browser LLM-powered content analysis module
to help users proactively identify and prevent sensitive data
leakage in their chatbot conversations [10, 68, 70] and to assist
proxies with filtering out problematic queries [20].

10

REFERENCES

[1] AnonChatGPT, “Anonchatgpt,” https://anonchatgpt.com/, n.d.

[2] Anthropic, “Introducing claude,” https://www.anthropic.com/news/
introducing-claude, 2023.

[3] C. Bocovich, A. Breault, D. Fifield, Serene, and X. Wang,
“Snowflake, a censorship circumvention system using temporary
WebRTC proxies,” in 33rd USENIX Security Symposium (USENIX
Security 24). Philadelphia, PA: USENIX Association, Aug. 2024, pp.
2635–2652. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/bocovich

[4] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramer, and C. Zhang,
“Quantifying memorization across neural language models,” in The
Eleventh International Conference on Learning Representations, 2023.
[Online]. Available: https://openreview.net/forum?id=TatRHT 1cK

[5] S. Celi, A. Davidson, H. Haddadi, G. Pestana, and J. Rowell,
“DiStefano: Decentralized infrastructure for sharing trusted encrypted
facts and nothing more,” Cryptology ePrint Archive, Paper 2023/1063,
2023. [Online]. Available: https://eprint.iacr.org/2023/1063

[6] D. Chaum, “Blind signatures for untraceable payments,” in Advances
in Cryptology, D. Chaum, R. L. Rivest, and A. T. Sherman, Eds.
Boston, MA: Springer US, 1983, pp. 199–203. [Online]. Available:
https://doi.org/10.1007/978-1-4757-0602-4 18

[7] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,” in
Advances in Cryptology — CRYPTO’ 88, S. Goldwasser, Ed. New
York, NY: Springer New York, 1990, pp. 319–327. [Online]. Available:
https://doi.org/10.1007/0-387-34799-2 25

[8] T. Chen, H. Bao, S. Huang, L. Dong, B. Jiao, D. Jiang, H. Zhou,
J. Li, and F. Wei, “THE-X: Privacy-preserving transformer inference
with homomorphic encryption,” in Findings of the Association for
Computational Linguistics: ACL 2022, S. Muresan, P. Nakov, and
A. Villavicencio, Eds. Dublin, Ireland: Association for Computational
Linguistics, May 2022, pp. 3510–3520. [Online]. Available: https:
//aclanthology.org/2022.findings-acl.277

[9] B. Chesneau, “Gunicorn,” https://gunicorn.org/, n.d.

[10] C. J. Chong, C. Hou, Z. Yao, and S. M. S. Talebi, “Casper: Prompt
sanitization for protecting user privacy in web-based large language
models,” 2024. [Online]. Available: https://arxiv.org/abs/2408.07004

[11] J. Clusmann, F. R. Kolbinger, H. S. Muti, Z. I. Carrero, J.-N. Eckardt,
N. G. Laleh, C. M. L. Löffler, S.-C. Schwarzkopf, M. Unger, G. P.
Veldhuizen, S. J. Wagner, and J. N. Kather, “The future landscape of
large language models in medicine,” Communications Medicine, vol. 3,
no. 1, pp. 1–8, Oct. 2023, publisher: Nature Publishing Group. [Online].
Available: https://www.nature.com/articles/s43856-023-00370-1

[12] F. Corella and K. Lewison, “Storing cryptographic keys in persistent
browser storage,” Presented in International Cryptographic Module
Conference 2017 (ICMC ’17), 2017, available at https://pomcor.com/
documents/KeysInBrowser.pdf.

[13] cure53, “Dompurify,” https://github.com/cure53/DOMPurify, n.d.

[14] F. Denis, F. Jacobs, and C. A. Wood, “RSA Blind Signatures,” RFC
9474, Oct. 2023. [Online]. Available: https://doi.org/10.17487/RFC9474

[15] P. Dikshit, J. Sengupta, and V. Bajpai, “Recent trends on privacy-
preserving technologies under standardization at the ietf,” SIGCOMM
Comput. Commun. Rev., vol. 53, no. 2, p. 22–30, jul 2023. [Online].
Available: https://doi.org/10.1145/3610381.3610385

[16] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, ser. SSYM’04.
USA: USENIX Association, 2004, p. 21. [Online]. Available:
https://doi.org/10.5555/1251375.1251396

[17] J. Domingo-Ferrer, M. Bras-Amorós, Q. Wu, and J. Manjón, “User-
private information retrieval based on a peer-to-peer community,” Data
& Knowledge Engineering, vol. 68, no. 11, pp. 1237–1252, 2009.
[Online]. Available: https://doi.org/10.1016/j.datak.2009.06.004

[18] J. Ernstberger, J. Lauinger, Y. Wu, A. Gervais, and S. Steinhorst,
“ORIGO: Proving provenance of sensitive data with constant
communication,” Cryptology ePrint Archive, Paper 2024/447, 2024.
[Online]. Available: https://eprint.iacr.org/2024/447

[19] F5, “Nginx,” https://www.nginx.com/, n.d.

[20] I. Fedorov, K. Plawiak, L. Wu, T. Elgamal, N. Suda, E. Smith, H. Zhan,
J. Chi, Y. Hulovatyy, K. Patel, Z. Liu, C. Zhao, Y. Shi, T. Blankevoort,
M. Pasupuleti, B. Soran, Z. D. Coudert, R. Alao, R. Krishnamoorthi,
and V. Chandra, “Llama Guard 3-1B-INT4: Compact and Efficient
Safeguard for Human-AI Conversations,” 2024. [Online]. Available:
https://arxiv.org/abs/2411.17713

[21] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias, and A. Mayer,
“Consistent, yet anonymous, web access with lpwa,” Communications
of the ACM, vol. 42, no. 2, pp. 42–47, 1999. [Online]. Available:
https://doi.org/10.1145/293411.293447

[22] E. Gabber, P. B. Gibbons, Y. Matias, and A. Mayer, “How to
make personalized web browsing simple, secure, and anonymous,”
in Financial Cryptography: First International Conference, FC’97
Anguilla, British West Indies February 24–28, 1997 Proceedings 1.
Springer, 1997, pp. 17–31. [Online]. Available: https://doi.org/10.1007/
3-540-63594-7 64

[23] Google, “Introducing gemini: Our largest and most capable ai model,”
https://blog.google/technology/ai/google-gemini-ai/, 2023.

[24] ——, “Manifest v3,” https://developer.chrome.com/docs/extensions/
develop/migrate/what-is-mv3, n.d.

[25] M. M. Grynbaum and R. Mac, “New york times sues
openai and microsoft over a.i. use of copyrighted work,”
https://www.nytimes.com/2023/12/27/business/media/new-york-times-
open-ai-microsoft-lawsuit.html, 2023.

[26] P. He, J. Gao, and W. Chen, “DeBERTav3: Improving deBERTa using
ELECTRA-style pre-training with gradient-disentangled embedding
sharing,” in The Eleventh International Conference on Learning
Representations, 2023. [Online]. Available: https://openreview.net/
forum?id=sE7-XhLxHA

[27] Hola VPN Ltd., “Hola,” https://hola.org/, n.d.
[28] HuggingFace, “Huggingchat,” https://huggingface.co/chat/, n.d.
[29] IETF, “Multiplexed application substrate over quic encryption,” https:

//datatracker.ietf.org/wg/masque/about/, n.d.
[30] M. B. Jones, J. Bradley, and N. Sakimura, “JSON Web Token

(JWT),” RFC 7519, May 2015. [Online]. Available: https://www.rfc-
editor.org/info/rfc7519

[31] R. Jones, R. Kumar, B. Pang, and A. Tomkins, “I know what you
did last summer: Query logs and user privacy,” in Proceedings of
the Sixteenth ACM Conference on Conference on Information and
Knowledge Management, ser. CIKM ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 909–914. [Online].
Available: https://doi.org/10.1145/1321440.1321573

[32] M. Kalka and M. Kirejczyk, “A comprehensive review of TLSNotary
protocol,” 2024. [Online]. Available: https://arxiv.org/abs/2409.17670

[33] S. Karami, P. Ilia, K. Solomos, and J. Polakis, “Carnus: Exploring the
privacy threats of browser extension fingerprinting.” in In Proceedings
of the 27th Network and Distributed System Security Symposium
(NDSS). San Diego, CA, USA: The Internet Society, 2020. [Online].
Available: https://doi.org/10.14722/ndss.2020.24383

[34] I. Karunanayake, N. Ahmed, R. Malaney, R. Islam, and S. K. Jha,
“De-anonymisation attacks on tor: A survey,” IEEE Communications
Surveys & Tutorials, vol. 23, no. 4, pp. 2324–2350, 2021. [Online].
Available: https://doi.org/10.1109/COMST.2021.3093615

[35] J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Goldstein,
“A watermark for large language models,” in Proceedings of the
40th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, A. Krause, E. Brunskill, K. Cho,
B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202. Honolulu, HI,
USA: PMLR, 23–29 Jul 2023, pp. 17 061–17 084. [Online]. Available:
https://proceedings.mlr.press/v202/kirchenbauer23a.html

[36] J. Lai, W. Gan, J. Wu, Z. Qi, and P. S. Yu, “Large language
models in law: A survey,” 2023. [Online]. Available: https:
//arxiv.org/abs/2312.03718

[37] Y. Li, S. Wang, H. Ding, and H. Chen, “Large Language Models
in Finance: A Survey,” in 4th ACM International Conference on AI
in Finance. Brooklyn NY USA: ACM, Nov. 2023, pp. 374–382.
[Online]. Available: https://dl.acm.org/doi/10.1145/3604237.3626869

[38] Z. Li, C. Liang, J. Peng, and M. Yin, “The Value, Benefits,
and Concerns of Generative AI-Powered Assistance in Writing,” in
Proceedings of the CHI Conference on Human Factors in Computing

11

https://anonchatgpt.com/
https://www.anthropic.com/news/introducing-claude
https://www.anthropic.com/news/introducing-claude
https://www.usenix.org/conference/usenixsecurity24/presentation/bocovich
https://www.usenix.org/conference/usenixsecurity24/presentation/bocovich
https://openreview.net/forum?id=TatRHT_1cK
https://eprint.iacr.org/2023/1063
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/0-387-34799-2_25
https://aclanthology.org/2022.findings-acl.277
https://aclanthology.org/2022.findings-acl.277
https://gunicorn.org/
https://arxiv.org/abs/2408.07004
https://www.nature.com/articles/s43856-023-00370-1
https://pomcor.com/documents/KeysInBrowser.pdf
https://pomcor.com/documents/KeysInBrowser.pdf
https://github.com/cure53/DOMPurify
https://doi.org/10.17487/RFC9474
https://doi.org/10.1145/3610381.3610385
https://doi.org/10.5555/1251375.1251396
https://doi.org/10.1016/j.datak.2009.06.004
https://eprint.iacr.org/2024/447
https://www.nginx.com/
https://arxiv.org/abs/2411.17713
https://doi.org/10.1145/293411.293447
https://doi.org/10.1007/3-540-63594-7_64
https://doi.org/10.1007/3-540-63594-7_64
https://blog.google/technology/ai/google-gemini-ai/
https://developer.chrome.com/docs/extensions/develop/migrate/what-is-mv3
https://developer.chrome.com/docs/extensions/develop/migrate/what-is-mv3
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://hola.org/
https://huggingface.co/chat/
https://datatracker.ietf.org/wg/masque/about/
https://datatracker.ietf.org/wg/masque/about/
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://doi.org/10.1145/1321440.1321573
https://arxiv.org/abs/2409.17670
https://doi.org/10.14722/ndss.2020.24383
https://doi.org/10.1109/COMST.2021.3093615
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://arxiv.org/abs/2312.03718
https://arxiv.org/abs/2312.03718
https://dl.acm.org/doi/10.1145/3604237.3626869

Systems, ser. CHI ’24. New York, NY, USA: Association for
Computing Machinery, May 2024, pp. 1–25. [Online]. Available:
https://doi.org/10.1145/3613904.3642625

[39] Z. Luo, Y. Jia, Y. Shen, and A. Kate, “Proxying is enough: Security of
proxying in TLS oracles and AEAD context unforgeability,” Cryptology
ePrint Archive, Paper 2024/733, 2024, https://eprint.iacr.org/2024/733.
[Online]. Available: https://eprint.iacr.org/2024/733

[40] Meta, “Meta ai,” https://ai.meta.com/meta-ai/, n.d.
[41] Microsoft, “Introducing microsoft 365 copilot – your copilot

for work,” https://blogs.microsoft.com/blog/2023/03/16/introducing-
microsoft-365-copilot-your-copilot-for-work/, 2023.

[42] ——, “Linkedin,” https://linkedin.com, n.d.
[43] N. Mireshghallah, M. Antoniak, Y. More, Y. Choi, and G. Farnadi,

“Trust no bot: Discovering personal disclosures in human-LLM
conversations in the wild,” in First Conference on Language
Modeling, 2024. [Online]. Available: https://openreview.net/forum?id=
tIpWtMYkzU

[44] N. Mireshghallah, H. Kim, X. Zhou, Y. Tsvetkov, M. Sap, R. Shokri,
and Y. Choi, “Can LLMs keep a secret? testing privacy implications
of language models via contextual integrity theory,” in The Twelfth
International Conference on Learning Representations, 2024. [Online].
Available: https://openreview.net/forum?id=gmg7t8b4s0

[45] Mullvad, “Mullvad vpn,” https://mullvad.net/, n.d.
[46] A. Narayanan, H. Paskov, N. Z. Gong, J. Bethencourt, E. Stefanov,

E. C. R. Shin, and D. Song, “On the feasibility of internet-scale author
identification,” in 2012 IEEE Symposium on Security and Privacy.
Los Alamitos, CA, USA: IEEE Computer Society, may 2012, pp.
300–314. [Online]. Available: https://doi.org/10.1109/SP.2012.46

[47] J. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54,
no. 2, pp. 286–295, 1951, https://doi.org/10.2307/1969529.

[48] M. Nasr, N. Carlini, J. Hayase, M. Jagielski, A. F. Cooper, D. Ippolito,
C. A. Choquette-Choo, E. Wallace, F. Tramèr, and K. Lee, “Scalable
extraction of training data from (production) language models,” 2023.
[Online]. Available: https://arxiv.org/abs/2311.17035

[49] M. Nasr, H. Zolfaghari, A. Houmansadr, and A. Ghafari, “Massbrowser:
Unblocking the censored web for the masses, by the masses.” in 27th
Annual Network and Distributed System Security Symposium (NDSS
’2020). San Diego, CA, USA: The Internet Society, 2020. [Online].
Available: https://doi.org/10.14722/ndss.2020.24340

[50] S. Neel and P. Chang, “Privacy issues in large language models: A
survey,” 2024. [Online]. Available: https://arxiv.org/abs/2312.06717

[51] noVNC, “Websockify,” https://github.com/novnc/websockify, n.d.
[52] OpenAI, “Introducing chatgpt,” https://openai.com/blog/chatgpt, 2022.
[53] ——, “Disrupting malicious uses of ai by state-affiliated threat ac-

tors,” https://openai.com/blog/disrupting-malicious-uses-of-ai-by-state-
affiliated-threat-actors, 2024.

[54] ——, “Memory and new controls for chatgpt,” https://openai.com/
index/memory-and-new-controls-for-chatgpt/, 2024.

[55] ——, “Start using chatgpt instantly,” https://openai.com/index/start-
using-chatgpt-instantly/, 2024.

[56] OpenJS, “Nodejs,” https://nodejs.org/, n.d.
[57] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,

C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano,
J. Leike, and R. Lowe, “Training language models to follow instructions
with human feedback,” in Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 27 730–27 744.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

[58] Pallets, “Flask,” https://flask.palletsprojects.com/en/3.0.x/, n.d.
[59] S. T. Peddinti and N. Saxena, “Web search query privacy:

Evaluating query obfuscation and anonymizing networks,” J. Comput.
Secur., vol. 22, no. 1, p. 155–199, jan 2014. [Online]. Available:
https://dl.acm.org/doi/10.5555/2590636.2590640

[60] Perplexity, “Perplexity.ai,” https://www.perplexity.ai/, n.d.
[61] I. Pilán, P. Lison, L. Øvrelid, A. Papadopoulou, D. Sánchez,

and M. Batet, “The Text Anonymization Benchmark (TAB): A
Dedicated Corpus and Evaluation Framework for Text Anonymization,”

Computational Linguistics, vol. 48, no. 4, pp. 1053–1101, 12 2022.
[Online]. Available: https://doi.org/10.1162/coli a 00458

[62] Privacy and Scaling Explorations, “Tlsnotary,” https://tlsnotary.org/, n.d.
[63] Private-AI, “Privategpt,” https://www.private-ai.com/private-chatgpt/,

n.d.
[64] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version

1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://www.rfc-
editor.org/info/rfc8446

[65] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan,
Y. Adi, J. Liu, R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov,
I. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong,
A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier,
T. Scialom, and G. Synnaeve, “Code llama: Open foundation models
for code,” 2024. [Online]. Available: https://arxiv.org/abs/2308.12950

[66] S. Sasy and I. Goldberg, “Sok: Metadata-protecting communication
systems,” Cryptology ePrint Archive, Paper 2023/313, 2023. [Online].
Available: https://eprint.iacr.org/2023/313

[67] F. Shirazi, M. Simeonovski, M. R. Asghar, M. Backes, and C. Diaz,
“A survey on routing in anonymous communication protocols,”
ACM Comput. Surv., vol. 51, no. 3, jun 2018. [Online]. Available:
https://doi.org/10.1145/3182658

[68] L. Siyan, V. C. Raghuram, O. Khattab, J. Hirschberg, and
Z. Yu, “Papillon: Privacy preservation from internet-based and
local language model ensembles,” 2024. [Online]. Available: https:
//arxiv.org/abs/2410.17127

[69] R. Staab, M. Vero, M. Balunovic, and M. Vechev, “Beyond
memorization: Violating privacy via inference with large language
models,” in The Twelfth International Conference on Learning
Representations, 2024. [Online]. Available: https://openreview.net/
forum?id=kmn0BhQk7p

[70] R. Staab, M. Vero, M. Balunović, and M. Vechev, “Large language
models are advanced anonymizers,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.13846

[71] TeroBox, “Terobox,” https://terobox.com, n.d.
[72] Tor, “Onion service dos guidelines,” https://community.torproject.org/

onion-services/advanced/dos/, 2021.
[73] W3C, “Web cryptography api,” https://w3c.github.io/webcrypto/, 2023.
[74] A. Wei, N. Haghtalab, and J. Steinhardt, “Jailbroken:

How does llm safety training fail?” in Advances in
Neural Information Processing Systems, A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds.,
vol. 36. Curran Associates, Inc., 2023, pp. 80 079–80 110.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2023/file/fd6613131889a4b656206c50a8bd7790-Paper-Conference.pdf

[75] xAI, “Announcing grok,” https://x.ai/blog/grok, 2023.
[76] You.com, “Introducing youchat,” https://about.you.com/introducing-

youchat-the-ai-search-assistant-that-lives-in-your-search-engine-
eff7badcd655/, 2023.

[77] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels,
“Deco: Liberating web data using decentralized oracles for tls,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1919–1938. [Online].
Available: https://doi.org/10.1145/3372297.3417239

[78] W. Zhao, X. Ren, J. Hessel, C. Cardie, Y. Choi, and Y. Deng,
“Wildchat: 1m chatGPT interaction logs in the wild,” in The Twelfth
International Conference on Learning Representations, 2024. [Online].
Available: https://openreview.net/forum?id=Bl8u7ZRlbM

[79] J. Zhou, E. Xu, Y. Wu, and T. Li, “Rescriber: Smaller-llm-
powered user-led data minimization for navigating privacy trade-
offs in llm-based conversational agent,” 2025. [Online]. Available:
https://arxiv.org/abs/2410.11876

12

https://doi.org/10.1145/3613904.3642625
https://eprint.iacr.org/2024/733
https://eprint.iacr.org/2024/733
https://ai.meta.com/meta-ai/
https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work/
https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work/
https://linkedin.com
https://openreview.net/forum?id=tIpWtMYkzU
https://openreview.net/forum?id=tIpWtMYkzU
https://openreview.net/forum?id=gmg7t8b4s0
https://mullvad.net/
https://doi.org/10.1109/SP.2012.46
https://doi.org/10.2307/1969529
https://arxiv.org/abs/2311.17035
https://doi.org/10.14722/ndss.2020.24340
https://arxiv.org/abs/2312.06717
https://github.com/novnc/websockify
https://openai.com/blog/chatgpt
https://openai.com/blog/disrupting-malicious-uses-of-ai-by-state-affiliated-threat-actors
https://openai.com/blog/disrupting-malicious-uses-of-ai-by-state-affiliated-threat-actors
https://openai.com/index/memory-and-new-controls-for-chatgpt/
https://openai.com/index/memory-and-new-controls-for-chatgpt/
https://openai.com/index/start-using-chatgpt-instantly/
https://openai.com/index/start-using-chatgpt-instantly/
https://nodejs.org/
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://flask.palletsprojects.com/en/3.0.x/
https://dl.acm.org/doi/10.5555/2590636.2590640
https://www.perplexity.ai/
https://doi.org/10.1162/coli_a_00458
https://tlsnotary.org/
https://www.private-ai.com/private-chatgpt/
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://arxiv.org/abs/2308.12950
https://eprint.iacr.org/2023/313
https://doi.org/10.1145/3182658
https://arxiv.org/abs/2410.17127
https://arxiv.org/abs/2410.17127
https://openreview.net/forum?id=kmn0BhQk7p
https://openreview.net/forum?id=kmn0BhQk7p
https://arxiv.org/abs/2402.13846
https://terobox.com
https://community.torproject.org/onion-services/advanced/dos/
https://community.torproject.org/onion-services/advanced/dos/
https://w3c.github.io/webcrypto/
https://proceedings.neurips.cc/paper_files/paper/2023/file/fd6613131889a4b656206c50a8bd7790-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fd6613131889a4b656206c50a8bd7790-Paper-Conference.pdf
https://x.ai/blog/grok
https://about.you.com/introducing-youchat-the-ai-search-assistant-that-lives-in-your-search-engine-eff7badcd655/
https://about.you.com/introducing-youchat-the-ai-search-assistant-that-lives-in-your-search-engine-eff7badcd655/
https://about.you.com/introducing-youchat-the-ai-search-assistant-that-lives-in-your-search-engine-eff7badcd655/
https://doi.org/10.1145/3372297.3417239
https://openreview.net/forum?id=Bl8u7ZRlbM
https://arxiv.org/abs/2410.11876

APPENDIX

A. Proxy Integrity Analysis

Consider the following reward matrix for a malicious proxy
and a coordinator:

TABLE IV. GENERIC REWARD MATRIX. THE NUMBERS ON THE LEFT
OF THE TUPLES ARE THE REWARDS FOR THE COORDINATOR, AND THE

ONES ON THE RIGHT ARE FOR THE PROXY.

Coord.
Proxy Honest Dishonest

Audit (rcah, r
p
ah) (rcad, r

p
ad)

Non-audit (rcnh, r
p
nh) (rcnd, r

p
nd)

We can simplify the matrix by fixing the rewards of
the worst and best possible outcomes for each player. More
specifically, the malicious proxy wins if it acts dishonestly with
a non-audit query (rpnd = 1) and loses if the query is an audit
one (rpad = −1). The coordinator wins if it catches the proxy
being dishonest (rcad = 1) and loses if it fails to (rcnd = −1).
In addition, the coordinator does not get any reward if it does
not perform an audit and the proxy is honest (rcnh = 0).

TABLE V. SIMPLIFIED REWARD MATRIX.

Coord.
Proxy Honest Dishonest

Audit (rcah, r
p
ah) (1,−1)

Non-audit (0, rpnh) (−1, 1)

We further assume the following inequalities:

• −1 < rcah ≤ 0: Performing audits can cost the coordina-
tor, but is less costly than missing a dishonest query.

• rpah ≥ 0: Being honest with an audit query can reward
the proxy even though the proxy has to spend extra
computation resources to complete the audit.

• −1 < rpnh ≤ 0: Being honest with a non-audit query
can be costly since the proxy has to spend computation
resources without being rewarded. However, it is less
costly than being caught dishonest and banned from
participating.

Let pa be the probability of auditing, and let ph be the
probability of the proxy being honest. The state where no
players can improve their utility by changing their strategy is
called Nash Equilibrium (NE). A pure-strategy NE is when the
actions are chosen deterministically, whereas a mixed-strategy
NE is when the actions are chosen stochastically.

We can see that no pure-strategy NE exists with the
simplified reward scheme. The proxy’s expected reward is
rpahpa+rpnh(1−pa) if it is honest and −pa+(1−pa) = 1−2pa
if it is dishonest. Thus, the proxy will mix between the two
strategies if:

rpahpa + rpnh(1− pa) = 1− 2pa = ⇐⇒ pa =
1− rpnh

rpah − rpnh + 2

The coordinator’s expected reward is rcahph + (1 − ph) if
it audits and ph − 1 if it does not. Thus, the coordinator will
mix between the two strategies if:

rcahph + (1− ph) = ph − 1 ⇐⇒ ph = 2/(2− rcah)

Therefore, the mixed-strategy NE is p∗a = 1/(rpah−rpnh+2)
and p∗h = 2/(2 − rcah). Since we assume that −1 < rcah ≤ 0,
we have 2/3 < p∗h ≤ 1.

The mixed-strategy NE expected reward for the proxy is:

E[RP] = p∗a(p
∗
hr

p
ah − (1− p∗h)) + (1− p∗a)(p

∗
hr

p
nh + (1− p∗h))

The mixed-strategy NE expected reward for the coordinator
is:

E[RC] = p∗a(p
∗
hr

c
ah+(1− p∗h))− (1− p∗a)(1− p∗h) =

rcah
2− rcah

Since −1 < rcah ≤ 0, we have −1/3 < E[RC] ≤ 0.

Depending on the exact rewards, we have the following
results for the mixed-strategy NE and expected rewards:

TABLE VI. MIXED-STRATEGY NE AND EXPECTED PAYOFF FOR
DIFFERENT REWARD SCHEMES

Scenario p∗a p∗h E[RP] E[RC]

r
p
ah

= r
p
nh

= rcah = 0 1/2 1 0 0

r
p
ah

= r
p
nh

= 0, rcah < 0 1/2
2

2 − rc
ah

0
rcah

2 − rc
ah

r
p
ah

> 0, r
p
nh

= 0
1

r
p
ah

+ 2

2

2 − rc
ah

r
p
ah

r
p
ah

+ 2

rcah

2 − rc
ah

r
p
ah

= 0, r
p
nh

< 0
1 − r

p
nh

2 − r
p
nh

2

2 − rc
ah

r
p
nh

2 − r
p
nh

rcah

2 − rc
ah

r
p
ah

> 0, r
p
nh

< 0
1 − r

p
nh

r
p
ah

− r
p
nh

+ 2

2

2 − rc
ah

r
p
ah

+ r
p
nh

r
p
ah

− r
p
nh

+ 2

rcah

2 − rc
ah

Based on this, we can draw the following high-level
guidelines when designing and implementing ProxyGPT:

• To reduce the need for audits (i.e., decrease p∗a), we can
increase the reward for proxies for successfully com-
pleting audits rpah, such as by increasing the number of
e-cash. Decreasing the cost of honest proxying rpnh is
less straightforward since this is often a fixed constant
(e.g., each proxied request costs the proxy one chatbot
request). With careful design, we could focus on the
unspent request bandwidth that would have been wasted.

• To encourage proxies to be honest (i.e., increase p∗h), we
can (try to) decrease rcah, the cost for the coordinator to
perform audits when the proxy is honest. This is largely
dependent on the underlying TLS-backed data provenance
protocol.

We note that the current analysis model only allows us
to make relative interpretations concerning the behavior of the
proxies and the coordinator. It does not enable us to determine
the exact amount of the rewards needed to achieve a beneficial
scenario. We would need a more detailed model that can, for
example, correctly relate the two quantities rpah and rcah since
giving more rewards to a proxy can introduce future costs to
the system. We leave this for future work.

13

B. Example of a Verification Challenge

Fig. 7. Example of a verification challenge for proxies (screenshot taken
from ChatGPT website).

Fig. 8. Visualization of a verified TLSNotary proof (screenshot taken from
https://tlsnotary.github.io/proof viz/). All sensitive information such as the
authorization token in the request header has been redacted by the proxy.

14

https://tlsnotary.github.io/proof_viz/

	Introduction
	Background & Related Work
	User Privacy in LLM Chatbots
	Anonymous Communications
	Provenance of TLS-protected Data

	ProxyGPT Participants and Threat Models
	Chatbot Providers
	Usage
	Mining User Conversation
	Modifying Chatbot Responses
	Activity Restriction

	Proxies
	Dishonest Service
	Collusion

	Users
	Malicious Queries
	Collusion

	Trusted Third Parties
	Coordinator
	Notary

	System Operation Details
	Query Submission
	Proxy info request
	Proxy selection
	Communication with proxy
	Rating proxy response
	Payment

	Proxy Registration & Audit

	Implementation Details
	Coordinator & Notary
	Deployment
	User Interface
	Proxy Audit

	Proxies
	Overview
	Setup
	Handling queries
	Audit
	E-cash
	Proxy Statistics

	Evaluation
	Query latency
	Audit latency

	Security Analysis & Ethical Considerations
	Privacy
	User identity
	Proxy identity

	Integrity
	Proxy integrity
	Chatbot integrity

	Security
	Key management
	DoS and Sybil attacks

	Ethical Considerations
	Automation
	Misuse
	Beyond chatbots

	Conclusion and Future Work
	References
	Appendix
	Proxy Integrity Analysis
	Example of a Verification Challenge

