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Abstract—The web was originally developed in an attempt
to allow scientists from around the world to share information
efficiently. As the web evolved, the threat model for the web
evolved as well. While it was probably acceptable for research
to be freely shared with the world, current use cases like
online shopping, media consumption or private messaging require
stronger security safeguards which ensure that network attackers
are not able to view, steal, or even tamper with the transmitted
data. Unfortunately the Hypertext Transfer Protocol (http) does
not provide any of these required security guarantees.

The Hypertext Transfer Protocol Secure (https) on the other
hand allows carrying http over the Transport Layer Security
(TLS) protocol and in turn fixes these security shortcomings of
http by creating a secure and encrypted connection between the
browser and the website. While the majority of websites support
https nowadays, https remains an opt-in mechanism that not
everyone perceives as necessary or affordable.

In this paper we evaluate the state of https adoption on
the web. We survey different mechanisms which allow upgrading
connections from http to https, and provide real world brows-
ing data from over 140 million Firefox release users. We provide
numbers showcasing https adoption in different geographical
regions as well as on different operating systems and highlight
the effectiveness of the different upgrading mechanisms. In the
end, we can use this analysis to make actionable suggestions to
further improve https adoption on the web.

I. INTRODUCTION

Over 30 years ago, on August 6th 1991, Tim Berner’s Lee
published a blog post sharing information about his World
Wide Web project [47]. With the words “Try it” he encouraged
the world to make use of the web. Since then billions have and
for most of us, the web has become an integral part of our daily
lives.

Since its inception, the fundamental protocol through which
web browsers and web servers communicate is http [13].
However, data transferred by the regular http protocol is
unprotected and transferred in the clear, granting a network
attacker the ability to view or even modify it. While in
the early days of the web this security drawback probably
was an acceptable trade-off, the web has started to host not
only considerably more content but also more sensitive user

data. Eventually the web was not only used by scientists to
share information, but the web started to host online shopping
sites where end users entered their credit card numbers. To
avoid fraud, these numbers had to be transferred securely.
Nowadays, not only credit card numbers, but literally all kinds
of sensitive data is transmitted over the wire and needs to
remain confidential from third parties.

Creating a secure and encrypted connection between the
browser and the web server provides the necessary security
guarantees and overcomes the security issues of http. More
precisely, carrying http over the Transport Layer Security
(TLS) protocol [14] enables the browser to authenticate the
identity of the web server to the browser, and ensures that
messages sent between the browser and the server are kept
confidential from all other parties.

Over the years we have witnessed tremendous progress
towards migrating the web to use https by default instead
of the outdated and insecure http protocol. Browser vendors
as well as the web community have initiated various efforts to
increase the ratio of websites delivering content over https
connections. Most notably, HTTP Strict Transport Security
(HSTS) [15] allows a server to signal to a browser to always
rely on https connections. Also, the Secure Contexts spec-
ification [51] which states to only expose powerful web APIs
to webpages loaded over https, has helped put pressure on
site operators resulting in increased https connections on the
web.

Another very important milestone towards increasing the
availability of https was the launch of the Let’s Encrypt
initiative [22]. Let’s Encrypt was the first global Certificate
Authority (CA) service that allowed website owners to au-
tomatically obtain free browser-trusted certificates, needed to
provide https connections for their websites. Presumably,
search engines boosting a site’s rank when available over
https [11] also had a positive effect.

Furthermore, browser vendors have started to build various
customized flavors of upgrading mechanisms directly into their
engines. Chromium, the rendering engine powering Chrome,
Brave, Edge and more, Firefox with its underlying engine
Gecko, as well as Safari on top of Webkit have started to
deploy upgrading mechanisms [3], [20], [28], [59]. All of these
efforts highlight the importance for the web community to
continuously deliver more content over a secure and encrypted
connection.

Generally a web page is transferred by first, a top-level
document load, followed by various sub-resource loads. A
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top-level load, or also document load or page load, refers
to the request of a top-level HTML document. Sub-resource
loads are all the resources (images, stylesheets, scripts, iframes,
etc.) contained within the top-level document which together
provide the content for the web page. Loading both top-
level documents and sub-resources over https is equally
important.

For this work we solely focus on top-level document loads
and on upgrading those. Please note, that when a top-level
document loads over https then all major browsers (Chrome,
Edge, Firefox, Safari) either upgrade insecure sub-resources,
like images, audio and video, or block insecure sub-resources,
like scripts and iframes. This behavior is defined in the
latest version of the Mixed Content Specification [48] which
ensures there is no http content within a top-level https
document anymore. This new behavior of either upgrading or
blocking mixed content eliminates the problem of exposing
sub-resources to an active network attacker as long as the top-
level document is loaded over https, thus putting even more
importance on the security of the top-level document load.

In this paper we survey the state of https connections on
the web and also highlight the different upgrading mechanisms
available on the server-side as well as on the client-side. On the
client-side we focus our survey on the web browser Firefox
specifically, due to our access to Firefox telemetry data. In
detail, we contribute the following:

• In Section II we survey the different upgrading mecha-
nisms available on the server side and provide insights
into current client side upgrading mechanisms within
the Firefox browser (version 134).

• In Section III we provide the current state of https
adoption on the web by evaluating real world data
reported by over 140 million Firefox release users.
We provide insights into https adoption for different
geographical regions and operating systems, and we
examine the effectiveness of the various upgrading
mechanisms.

• In Section IV we provide a discussion around our
gathered results as well as an outlook of having the
entire web rely exclusively on https connections in
the future.

II. A SURVEY OF UPGRADING MECHANISMS FOR
TOP-LEVEL LOADS

Over the past two decades various mechanisms have been
proposed to favor https connections whenever possible.
Within this section we survey the different upgrading mech-
anisms and highlight their effectiveness to upgrade top-level
document loads from http to https. Again, a top-level load
is the connection used to fetch the main HTML document for
the website you are trying to visit. Put simply, a top-level load
is the load of the URL that the browser displays in the address
bar.

Before we analyze the different upgrading mechanisms
and highlight their benefits and trade-offs it is important to
distinguish between upgrading mechanisms initiated on the
server-side by the web server and those which are available
on the client-side in the browser (See Table I).

Upgrading Mechanism Server-Side Client-Side

CSP upgrade-insecure-requests •
HTTP Strict Transport Security (HSTS) •
HTTPS Resource Records (HTTPS RR) •
Web Extensions •
HTTPS-Only Mode (Firefox built-in) •
HTTPS-First Mode (Firefox built-in) •

TABLE I: A comparison of different upgrading mechanisms
available on the server and client side - in particular upgrading
mechanisms available on the client in Firefox (version 134).

While implementations of server-side upgrading mecha-
nisms are basically identical in all browsers, built-in client-
side upgrading mechanisms differ in their implementations and
mechanics. This is due to server-side upgrading mechanisms
following standards from the World Wide Web Consortium
(W3C) [50] or the Internet Engineering Task Force (IETF) [18]
while client-side upgrading mechanisms are not standardized
yet. The fact that server-side upgrading mechanisms range
from DNS, to HTTP and HTML showcases how many protocol
layers contribute to establishing a secure connection.

For client-side upgrading mechanisms our work focuses on
the technical details of the different built-in upgrading mecha-
nisms available within Firefox. We decided to focus on Firefox
for the available client-side upgrading mechanisms because we
have access to telemetry data reported by real world Firefox
release users and can therefore measure, cross-reference, and
evaluate their effectiveness later within Section III.

A. The upgrade-insecure-requests directive in a
Content-Security-Policy

The Content Security Policy (CSP) [49] provides an added
layer of security for web pages that helps to detect and mitigate
certain types of attacks. While CSP is mostly known for
its protection against Cross-Site-Scripting (XSS) and other
injection attacks, the upgrade-insecure-requests di-
rective [46] provides a security feature that can ensure that all
insecure http requests are automatically upgraded to secure
https requests within a website.

To enable CSP, a web page needs to configure their web
server to return the Content-Security-Policy response
header in server responses, similar to the following:

1 Content-Security-Policy: upgrade-insecure-requests

Alternatively, a website can deliver a policy leveraging the
<meta> element in the HTML markup of a website.

Mostly, a web page would make use of this directive to
upgrade insecure sub-resources such as images, scripts, or
stylesheets, to secure requests. It is worth noting, that this
directive instructs the browser to brute force upgrades for
all sub-resources, regardless of their origin within the current
document. Hence, using this directive can cause sub-resources
on a website to result in broken loads if the upgrade from
http to https does not succeed.

More importantly in the context of this paper, the
upgrade-insecure-requests directive also applies to
same-origin top-level navigations and those which submit
form data [45]. In more detail, imagine you visit the website
https://example.com, and then you click a link on that
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web-page, that is same-origin with http://example.com,
modulo the scheme portion of the URL, then the browser will
upgrade the connection for this top-level load from http
to https. Websites utilizing this Content-Security-Policy
directive can hence ensure that the browser will automatically
upgrade http links on their site to https and thus provide
an additional layer of security against machine-in-the-middle
attacks on their sites [1], [5], [8], [40], [41].

Another interesting property of this feature is that CSP
works on a per-request, per-document basis. HSTS, on the
other hand, is a setting for the whole domain. This makes the
upgrade-insecure-requests directive a useful step-
ping stone towards a site-wide HSTS deployment.

B. HTTP Strict Transport Security (HSTS)

HTTP Strict Transport Security (HSTS) [15] allows a
website to signal that browsers should only interact with
the website using secure https connections and never with
insecure http connections. For HSTS-enabled websites, the
browser will always establish a secure and encrypted https
connection even when following a non-secure http URL.

A website implements an HSTS policy by sending the
Strict-Transport-Security response header in server
responses for https connections, similar to the following:

1 Strict-Transport-Security: max-age=<expire-time>;
includeSubDomains

The presence of the header indicates that the browser should
automatically upgrade http links to resources on the site
to the corresponding https links. For HSTS to work, the
header needs to contain a duration (max-age) in seconds
for how long the browser should remember this setting and
may include additional optional keywords. Such keywords for
example allow specifying whether the setting should apply
across all subdomains (by using includeSubDomains) in
addition to the main domain.

When the browser receives an HSTS header over https, it
caches that signal to upgrade all future requests to that website
to https. This allows the browser to automatically turn any
non-secure http link for a website into a secure https
link. For example, suppose that the site exampleB.com
deploys an HSTS header, and the browser has previously
visited exampleB.com over https. Then suppose that
https://exampleA.com/index.html contains a link
to http://exampleB.com/index.html. Because the
browser has previously visited exampleB.com and cached
the HSTS header, it will load the page over https despite
the http link.

A downside of HSTS is that browsers will ignore the
header if it is received over non-secure http. Hence, web
servers utilizing HSTS must first redirect the non-secure http
request and upgrade it to a secure https request (e.g. with
configurations that redirect all http requests to their https
equivalents). This requirement showcases a design limitation:
before a browser has visited a website and received HSTS
information, a request may still occur using plain http and
is therefore still vulnerable to downgrade attacks by tools such
as SSLStrip [25]. Hijacking this initial request suffices for an
attacker to perform a machine-in-the-middle attack, which in

turn allows them to downgrade the connection and eavesdrop
on, or modify data exchanged between client and server.

To prevent this kind of downgrade attack, modern browsers
introduced a mechanism known as the HSTS Preload
List - a static list of HSTS supporting domains that is inte-
grated and shipped with the browser [4], [26]. A website can
submit an inclusion request to the HSTS Preload List.
If accepted, the website’s domain gets added to the list and
browsers utilizing the list will exclusively make secure https
connections to it. Currently, this list contains slightly over
106,000 entries as inspected in the Firefox source code [32].
Obviously such a list based approach cannot scale to the size of
the internet which consists of billions of sites. However, given
that most of the web traffic on the internet occurs on a small
number of popular sites [39], this mechanism still enables top
sites to protect their end-users against downgrade and machine-
in-the-middle attacks.

C. HTTPS Resource Records (HTTPS RR)

Traditional methods of establishing secure connections, like
HSTS, often necessitate multiple network round trips between
the client and the server, resulting in latency. Therefore,
engineers in the IETF started developing a solution based on
the Domain Name System (DNS) system. HTTPS Resource
Records (or HTTPS RR [17]) is a DNS record type designed
to facilitate the discovery and connection to https-enabled
services before the first connection. Providing the additional
metadata directly within the DNS can reduce the number of
round trips required for a secure connection, as the browser can
consider the upgrade before establishing the actual connection.

A site administrator can set up HTTPS records for their
domain example.com as follows:

1 www.example.com 1800 IN HTTPS 1 . port=8002 alpn=h3

where www.example.com is the domain name, 1800 is
the Time to Live (TTL) for caching, and https specifies the
record type.

There are multiple extra fields in the DNS record that
we will not explain in full detail. Suffice to say that it
allows to direct traffic to other host names, ports and also
to immediately switch to different HTTP protocol levels (like
HTTP/2, HTTP/3) using the TLS Application-Layer Protocol
Negotiation Extension (ALPN) [16].

Therefore, a browser requesting the HTTPS record from the
DNS server receives all necessary information to establish an
encrypted and fast connection to https://example.com
by removing a lot of additional overhead that is otherwise
required within the upper layers of the http protocol to
negotiate an encrypted session. By supporting ALPN directly
in HTTPS RR, the browser is able to avoid further overhead
that is usually spent on negotiating the HTTP protocol version
by jumping straight to the HTTP/2 or HTTP/3 endpoints.

Like HSTS, this feature provides a control mechanism that
applies to the whole site and therefore requires all content to
be available over https. Notably different from HSTS, the
HTTPS Resource Record requires changes in the HTTP stack
as well as the DNS code of the client. Whereas HSTS relies on
an attacker not being able to attack the first request/response
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pair, HTTPS RR also requires the DNS traffic to be secure for
the browser to receive accurate information about the server’s
https configuration.

D. Upgrades from Web Extensions

A web extension [23] allows adding features and functions
to a web browser and hence allows enriching the browsing
experience of end-users. Generally web extensions are also
created using familiar web-based technologies, such as HTML,
CSS, and JavaScript. A web extension can further take advan-
tage of a set of privileged JavaScript APIs provided by the
browser which allow it to intercept and modify outgoing net-
work requests and therefore enables it to upgrade a connection
from http to https.

The list of web extensions that intend to secure web
traffic is long. The most prominent browser extensions for
upgrading connections is likely HTTPS Everywhere [6], which
allows browsers to encrypt communications with many major
websites. Extensions vary in how they balance strictness and
usability. While some extensions completely disallow http
requests and oftentimes simply block them, others warn or
upgrade requests opportunistically without any kind of extra
indication. Further, some extensions remember sites that are
incapable of serving https requests while others try to
upgrade every time.

For a while there have been extensions that reported ’seen
certificates’ for visited websites and therefore provided a
service that allowed others to verify which certificates are
legitimate when making a secure connection. These extensions
would warn users if a website changed its certificates or when
it provided different certificates to different end users. [35],
[60]. While this approach worked well for long-lived certifi-
cates, the shift towards shorter validity periods [42] and trends
in Cloud and Edge Computing have made these approaches
less reliable.

In contrast to the other mechanisms discussed here, site
authors have little to no influence over whether their users will
manually go through the steps of installing a web extension.
Given that most browser users are not security experts, the web
extension approach by itself is already limited to people who
have the required security background, and are further aware
that these kinds of extensions exist in the first place.

Additionally, we can see that the popularity of these exten-
sions has waned in the light of other mechanisms becoming
available. In fact, the development of the HTTPS Everywhere
extension from the Electronic Frontier Foundation (EFF) has
been paused in 2021, as a result of upcoming browser ar-
chitecture changes. The authors cite the ubiquity of https
enforcement mechanisms in various browsers, like HTTPS-
Only Mode in Firefox [20], Automatic HTTPS in Microsoft
Edge [24] or HTTPS-First in Google Chrome [3], [7].

E. HTTPS-Only Mode (Firefox built-in)

HTTPS-Only Mode [20] is an opt-in security feature in
Firefox. Chrome has a similar setting “Always use secure
connections” [10], while Safari requires one of the previously
mentioned extensions.

HTTPS-Only Mode upgrades all connections, whether top-
level or sub-resources loads, by rewriting the scheme portion of
a URL from http to https. If the browser cannot establish a
top-level https connection, e.g. because the web server does
not support https, the end user gets prompted with an error
message which explains the security risk. The user then has
the choice to either abandon the page visit or provide explicit
consent to grant Firefox the permission to visit the site using
an http connection.

For sub-resource loads, HTTPS-Only Mode enforces a
“brute force” approach - every connection for a sub-resource
load gets upgraded. If the upgraded load does not succeed,
there is no fallback mechanism. Measurements in previous
work [20] indicate that if a top-level connection can be
established using https, then it is extremely likely that sub-
resources within that page are also available over https.

While HTTPS-Only ensures that only https connections
are used, it potentially downgrades the browsing experience of
a regular end user. Because of its strictness it finds wide usage
with users who put a high value on privacy and security and,
due to the shared codebase, in the Tor Browser [54], however
it’s likely not suitable for typical users. In fact, it changes
the default behavior in a web browser, thereby affecting the
expectations of web developers that their content is behaving
according to widely accepted standards. Such behavior changes
can lead to websites working improperly in one browser while
working fine in another. This kind of inconsistency is captured
under the term “web compatibility”, or “webcompat” for short.
Finding the right balance between security, user experience and
web compatibility requires additional efforts in research and
development to roll such features out by default to all users in
release versions of browsers.

F. HTTPS-First Mode (Firefox built-in)

Eventually, Firefox introduced HTTPS-First Mode to im-
prove upon HTTPS-Only Mode. Internally HTTPS-First Mode
relies on the same security principles as HTTPS-Only Mode,
though it does not prompt the user for explicit permission
to visit an http URL in case the automatic upgrade fails.
Instead, the underlying algorithm of HTTPS-First Mode al-
lows the connection to automatically fall back to http for
cases where a secure and encrypted connection cannot be
established. Additionally, and as previously mentioned, the
new security guarantees provided by the Mixed Content Pro-
tection [48] only requires HTTPS-First Mode to act upon
top-level loads and leave the upgrading or blocking of sub-
resources to the implementation of the Mixed Content Speci-
fication.

An internal evaluation has shown that end users care
about their security, though they care slightly more about an
uninterrupted browsing experience. Only about two million
Firefox users have ever opt-ed into enabling HTTPS-Only
Mode. Of those, about a third have decided to disable it again.
This shows that a smooth browsing experience is preferable
over warning dialogs. And, a probably even more important
insight, that end users need built-in security by default. They
do not want to adjust the security settings of their browser
since most of them have little or no expertise in security.
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HTTPS-First Mode provides that usable security feature.
With its built-in fallback mechanisms HTTPS-First seems to
be more in line with what end users expect from a mod-
ern browser. This opportunistic approach of course does not
provide as strong security guarantees as HTTPS-Only Mode,
however it allows favoring secure and encrypted connections
whenever possible. Hence, the automatic upgrade with built-
in fallback mechanism that HTTPS-First provides seems like
the perfect balance between security and usability for the vast
majority of end users. Please note, that security conscious users
can still opt into enabling HTTPS-Only Mode which overrules
the settings of HTTPS-First Mode thus providing a mechanism
for end users to ensure that not a single web page will be
loaded using http without their explicit consent.

Firefox has been shipping HTTPS-First by default in
Private Browsing Mode [28] since version 91. We expect that
this feature requires fine tuning to cater to the long tail of the
web (cf. web compatibility) before it will be released in early
2025. In that notion, a subset of the functionality provided by
HTTPS-First is already generally enabled in release versions
of Firefox. For now general navigations remain unaffected in
this first wave of a progressive rollout of HTTPS-First Mode,
but loads that originate from the address bar already benefit
from the security advantages provided by HTTPS-First.

G. HTTPS Upgrades Proposal

Due to the shared interest in introducing additional encryp-
tion upgrades, engineers from multiple browsers are working
together to standardize their behaviors for upgrading page
loads to https as part of the WHATWG Fetch Standard [43].
The main discussion forum is a currently unmerged pull
request with the name “HTTPS Upgrades” [36]. The proposed
change aims to bring closer alignment among browser vendors.
It originally defined a behavior similar to HTTPS-First Mode
in Firefox, in that it attempts to load a page via secure https
first and falls back to an unencrypted http request when a
secure connection cannot be established. There were subtle
differences in that HTTPS-Upgrade would apply to all http
URLs whereas HTTPS-First would only upgrade navigations
on their default ports, i.e., switching http navigations on port
80 to https on port 443 (the respective default ports).

Furthermore, Firefox would respect pages that redirect
from https to http and no longer attempt to upgrade them,
in order to not cause endless redirect loops. Recent changes
to the proposal have led to much closer alignment. At this
point, we can consider the term HTTPS-First for the Firefox
implementation and HTTPS-Upgrades for the proposed feature
in WHATWG Fetch as two sides of the same coin. While we
can expect that the product-specific names in their respective
settings may live on, we can assume that the specification
and standardization efforts has led to full alignment across
browsers and will likely result in converging behavior and
increased web compatibility in the future.

III. EVALUATION

To provide an accurate picture of the state of https
adoption on the web we break our evaluation into four sub-
sections. We start by providing measurements of the evolution
of https adoption over the last ten years, from 2014 to

2024 (Subsection III-B). We then provide insights into https
adoption in different geographical regions (Subsection III-C)
and on different operating systems (Subsection III-D). Lastly,
we provide insights into the effectiveness of the different
upgrading mechanisms on the web (Subsection III-E). Before
however, we briefly provide background information on our
data-gathering mechanisms (Subsection III-A) used to provide
a stable line of comparison.

A. Background on Data-Gathering

The Firefox browser for Desktop (version 134) is available
for Windows, running Windows 10 or later supporting 32-
bit or 64-bit, for Mac running macOS 10.15 or later, and
for GNU/Linux using glibc 2.17, GTK+ 3.14, libglib 2.42,
and libstdc++ 4.8.1 or higher versions thereof. Also, the
Firefox browser is available for Android smartphones and
tablet devices running Android 5.0 with API level 21 or higher.

The Mozilla Telemetry Portal [33] lets us present informa-
tion gathered during one full Firefox release cycle (version
134), from January 7th to February 3rd, 2025. All the
collected information used for analysis is subject to Mozilla’s
Data Privacy Principles [27], which only permits collection
of non-user-specific data.

Our evaluation period of one month covers real world
browsing data of over 140 million Firefox release users
who agreed to report information back to Mozilla.

B. https Adoption on the Web Over the last Decade

Note: This subsection presents historic data collected as part
of Firefox telemetry [22]. For our research we precisely defined
what data to collect and installed new telemetry probes. When
doing so, we encountered that the data presented in this
subsection was historically collected in different situations in
regard to error handling, iframes, caching, redirect handling
and HTTP methods. While the chosen collection method results
in underreporting https usage compared to our newly in-
stalled probes in the other sections, it still captures the general
trend of https adoption over the last decade.

Fig. 1: Evolution of websites relying on https for the years
2014 to 2024. (Note: Data is also basis of Let’s Encrypt’s statistics. [22]).
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In 2014, ten years ago, under 30% of web pages were
loaded using https (Figure 1), leaving more than two thirds
of websites vulnerable to machine-in-the-middle attacks, and
hence putting user’s security and privacy at risk.

In the following years the graph in Figure 1 for https
supporting websites points steeply upwards. During those years
Let’s Encrypt launched. Again, Let’s Encrypt is an automated
certificate authority that allows website owners to automat-
ically obtain a browser-trusted certificate free of charge to
secure their website traffic. Having the ability to get a free cer-
tificate for a website paired with an upgrading mechanism like
HSTS [15] or also CSP’s upgrade-insecure-requests
directive [46] have certainly contributed to this success. Fur-
thermore, browser vendors following the suggestions from the
Secure Contexts specification [51] forced web developers to
upgrade their websites security model to use the latest and
most powerful web APIs to provide a rich user experience. Ad-
ditionally, search engines considering https availability for
search rankings [11] caused website operators to re-think their
security model and potentially upgrade their website to support
https. Whatever combination of the above-mentioned factors
made the difference, fact is, the graph in Figure 1 shows a
doubling of https adoption during the years 2016 to 2019.

Finally, we observe that between the years 2019 and 2024
the graph, and hence the increase of websites loading over
https, starts to flatten. We reason that this flattening is
because more people, also in lesser developed countries started
to have access to the internet, which caused the proportion of
websites loaded over https to flatten. But either way, we
note that by the end of 2024, more than 80% of web pages
were loaded using https (see Figure 1), almost tripling the
percentage from 2014. The exact usage rate varies by region
as we will discuss in more detail in Subsection III-C.

C. The State of https Adoption in Different Geographical
Regions

Europe
95.7%

North America
96.8%

Asia
84.7%

Africa
80.5%

South America
81.9%

Oceania
96.2%

UN 10 Least Developed Countries
72.2%

Fig. 2: The state of https adoption on different continents
as well as for the ten least developed countries in the world.

Continent Country Name Geogr. Code https

North America 96.8%
Canada CA 97.1%
United States US 96.4%

Europe 95.7%
Austria AT 94.9%
Belgium BE 97.0%
Denmark DK 98.0%
France FR 96.8%
Germany DE 95.9%
Italy IT 91.1%
Netherlands NL 96.1%
Norway NO 97.3%
Portugal PT 94.8%
Spain ES 95.1%

Asia 84.7%
China CN 77.6%
India IN 83.2%
Indonesia ID 71.5%
Iran IR 84.5%
Japan JP 93.8%
Pakistan PK 87.4%
Saudi Arabia SA 86.8%
South Korea KR 91.2%
Thailand TH 84.2%
Turkey TR 86.9%

South America 81.9%
Argentina AR 90.0%
Brazil BR 87.1%
Chile CL 87.5%
Colombia CO 81.7%
Costa Rica CR 86.2%
Ecuador EC 88.2%
Panama PA 87.4%
Paraguay PY 62.5%
Peru PE 78.8%
Uruguay UY 66.9%

Africa 80.5%
Algeria DZ 92.3%
Angola AO 81.1%
Egypt EG 88.4%
Kenya KE 70.5%
Morocco MA 70.1%
Nigeria NG 83.6%
Rep. of the Congo CG 88.4%
South Africa ZA 86.8%
Tunisia TN 81.4%
Uganda UG 62.4%

Oceania 96.2%
Australia AU 95.2%
New Zealand NZ 97.1%

UN 10 Least
Developed
Countries 72.2%

Bangladesh BD 77.9%
Burkina Faso BF 94.9%
Cambodia KH 78.9%
Ethiopia ET 66.2%
Haiti HT 77.8%
Mali ML 66.1%
Mozambique MZ 78.0%
Myanmar MM 55.2%
Sudan SD 51.2%
Yemen YE 75.5%

TABLE II: Detailed list of https adoption on the different
continents separated by selected countries plus https adop-
tion for ten of the least developed countries in the world.
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To provide an accurate picture of https adoption around
the world, we provide numbers on https usage for the
different continents. Depending on the continent we evaluate
data of up to ten different countries. We cluster information
together (see Figure 2) but also provide individual percentage
numbers for all the inspected countries (see Table II).

Note: We randomly selected the countries for each continent.
While this selection may introduce a small bias, the presented
numbers provide valuable insights about the range of https
adoption around the globe.

Note that we provide the country name and also the
geographic code. The Firefox telemetry systems strip a lot
of unused information during ingress, for various reasons.
In particular, sender IP addresses are resolved into country
codes using GeoIP. We provide these geographic codes for
reproducibility purposes and because the Mozilla telemetry
portal relies on geographic codes for querying specific regional
data [34].

Further, we not only want to shed light on the usage of
https individually for the global north and the global south,
but also evaluate https adoption in countries which might
not have the resources to encrypt all of their connections. We
want to see if some countries are left behind and need to
catch up, and evaluate if there is a correlation between lesser
developed countries and https adoption. To accomplish that
comparison, we select ten countries from the UN list of the
least developed countries [56] and inspect https adoption in
these countries specifically.

As illustrated in Figure 2, our measurements show that the
global north consisting of North America, Europe and Oceania
are able to encrypt over 95% of their top-level connections. In
more detail, North America’s HTTPS adoption is at 96.8%,
Europe at 95.7% and Oceania at 96.2%. In contrast, the
global south consisting of Asia, South America and Africa are
roughly able to encrypt 82% of their top-level connections.
More precisely, Asia 84.7%, South America 81.9% and Africa
80.5%.

This high-level comparison shows that there is roughly a
13% difference in https traffic between the global north and
the global south.

When we look more closely at the country specific results
from Table II we see that the top three countries for https
adoption are Denmark with 98.0%, Norway, with 97.3% and
then Canada or also New Zealand, both with 97.1%. On the
other end of the spectrum we see that the three countries with
the least encryption of top-level loads are Sudan with 51.2%,
Myanmar with 55.2% and Uganda with 62.4%.

Comparing the top three countries with an average of
97.5% of https adoption with the three countries that have
the least https adoption, namely on average 56.3% we see
that there is roughly a 40% difference. Put differently, around
six out of 10 web page loads in any of those three countries
on the lower end of the https adoption spectrum are not
encrypted, exposing network traffic to network attackers and
hence putting an end user’s security at risk.

Finally, when looking at the list of https adoption for
the ten least developed countries in the world (see bottom

of Table II), we see that on average only 72.2% of top-level
connections rely on a secure and encrypted connection. Given
that the top ten countries from the global north are encrypting
close to 97% of their connections, we see that there is almost
a 25% difference of https adoption between the top ten
countries from the global north and the ten least developed
countries in the world.

In closing, we can see that there is a correlation whether
a country is from the global north or from the global south
in regard to https adoption. While https adoption for
countries located in the global north is getting closer and closer
to 100%, we see that the least developed countries from the
global south do not appear to encrypt as many top-level loads
and may need further support to increase the security of their
data transfer.

D. The State of https Adoption on Different Operating
Systems

In this section we provide a comparison of https adoption
for users on the different operating systems Windows, macOS,
Linux and Android. The following data is reported from over
140 million Firefox release users from all over the world and is
not segregated by region. In detail, during our data collection
period of one month we recorded data from approximately
107 million Firefox users on Windows, seven million users on
macOS, five million users on Linux and 25 million users on
Android.

Windows

local 6.0%

http 2.7%

https
91.3%

local 1.3%

http 2.1%

macOS

local 10.5%

http 3.1%

Linux

local 0.8%

http 5.4%

Android

https
96.6% https

86.4%
https
93.8%

Fig. 3: Adoption of https on the different Operating Systems:
Windows, macOS, Linux and Android.

Figure 3 provides aggregated percentage numbers for all
top-level loads for the operating systems Windows, macOS,
Linux and Android and illustrates how many top-level loads
occur over https or http, whereas local is a subset of
http, meant to highlight requests that are not as easily upgraded
to https.

As illustrated, 91.3% of all top-level web traffic on Win-
dows is transmitted over https. The operating system where
Firefox manages to establish the highest percentage of secure
connections is macOS, where 96.6% of all top-level loads oc-
cur over https. Finally, the mobile operating system Android
allows Firefox to establish 93.8% of secure and encrypted
https connections.

Linux only establishes 86.4% https connections, which
at first sight indicates that Linux leaves the most web traffic
vulnerable to network attackers. When taking a closer look
however Figure 3 illustrates that Linux also establishes the
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most connections (10.4%) to sites in local IP ranges which are
not as easily upgradeable. We reason that the Linux audience
has a higher share of developers and system administrators and
hence spend a lot of work in local IP ranges.

E. The Effect of https Upgrading Mechanisms on the Web

Within this section we provide a detailed analysis of all top-
level loads that (a) already start out being https, (b) loads
that the different upgrading mechanisms are able to upgrade,
(c) local http loads that occur in the local IP range that
cannot be upgraded and (d) loads that still occur over insecure
and unencrypted http connections.

Please note that Firefox telemetry records and reports only
the first mechanism that upgrades a request. Browsers imple-
ment the upgrading mechanisms in a specified order. Firefox
gives precedence to upgrading as specified in the WHATWG
Fetch specification [43] and only then applies its own improve-
ments. Only if Firefox cannot detect any upgrading signal orig-
inating from the server, does it check, one-by-one, the internal
upgrading mechanisms. In more detail, the upgrading order in
Firefox is: HSTS, CSP upgrade-insecure-requests,
HTTPS-RR, and if enabled, HTTPS-Only, HTTPS-First and
finally web extension upgrades.

HSTS
62.4%

http
2.4%

local
5.5%

CSP UIR
0.3%

HTTPS-Only
2.3%

upgradeable 
content
1.7%

HTTPS-First
30.4%

Web Extension
3.3%

HTTPS RR
1.3%

https
90.4%

Fig. 4: Comparison for top-level (document) loads, relying on
https, http, local http and the effectiveness of the
various upgrading mechanisms.

Looking at the left pie chart in Figure 4, we see that 90.4%
of all top-level loads recorded during our study already start
out as https. In other words, there was no need for any
of the different upgrading mechanisms to apply and improve
the load process because these loads were specified to happen
over a secure and encrypted https connection to begin with.
These may be sites retrieved from the browsing history or
bookmarks, or hyperlinks which point to URLs starting with
https. Further, we found that 5.5% of top-level loads connect
to a local http address which can not be upgraded because
those loads happen in the local IP range. On the other end of
the spectrum we found that 2.4% still end up happening on
the outdated and insecure http protocol, because no upgrade
mechanism succeeded.

That leaves 1.7% of top-level loads that are subject to the
various upgrading mechanisms that can potentially upgrade a
top-level connection from http to https. The pie chart on
the right side of Figure 4 presents a breakdown of those 1.7%
of upgraded content and shows which upgrading mechanisms
are responsible for those upgrades. The data indicates that
HSTS is the leading upgrading mechanism and accounts for
about 62.4% of all loads that can be upgraded. Recall that the
majority of web traffic happens on top sites, which are all on
the HSTS Preload List.

HSTS is followed by Firefox’s built-in upgrading mech-
anism HTTPS-First Mode. It is accountable for 30.4% of
upgrades. HTTPS-First tries to upgrade a connection from
http to https and also has a built-in fallback mechanism
in case the upgrade does not succeed. Approximately 14% of
loads which HTTPS-First tries to upgrade, fall back to http.
In our chart, such a failed upgrade attempt shows up in the
left pie chart under http loads.

Further, we see 3.3% of upgrades from http to https
are due to web extensions that upgrade connections. 2.3%
of upgrades are triggered by the opt-in HTTPS-Only mode.
Finally, the data shows that HTTPS Resource Records in DNS
and CSPs upgrade-insecure-requests directive play
a smaller role in the importance of upgrading mechanisms by
being responsible for 1.3% and 0.3% of loads respectively.

We want to emphasize that even though 1.7% of upgraded
connections seems like a low percentage, it translates to an
impressive absolute number of more than 1.4 billion top-level
loads that can be upgraded from http to https for our
measurement period and shows the importance of investing in
upgrading mechanisms to secure as many loads as possible and
keep end users protected from machine-in-the-middle attacks.

IV. DISCUSSION AND OUTLOOK

As the data has shown, by now a large majority of the
internet’s communication is taking place over https. More
importantly, the ratio of sites relying on https continues to
grow. However, getting to a fully encrypted web, where every
single connection is encrypted does not seem to be in sight
quite yet.

While it would be technically feasible for a browser to
only allow https connections and completely block all
http traffic, this is not a reasonable step. For one, legacy
websites that can only be reached over http would be blocked
which would bury valuable content forever and non-publicly
resolvable domain names such as .arpa, router.local,
or 192.168.1.1 in a local domain could not be accessed
either. Second, it would show an unreasonable amount of
warnings to users which generally leads to those warnings
being ignored.

Security is obviously important, and we should try hard
to encrypt everything on the network but removing access to
websites completely is undesired. The W3C even devotes a
section named Support Existing Content in their HTML Design
Principles [44] to this topic. In it, the authors explain that
every design decision on the web should be carefully weighed
against the likely cost of breaking sites.
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A. A Fork in the Road of the Open Web

The web evolved over time and still holds millions of
legacy websites that can only be reached over http. By no
means should we cut the cord for all these websites. That
would severely restrict the free flow of information - something
that is widely recognized as unacceptable.

However, we need to start considering not allowing newly
created websites to be accessed without a browser-trusted
certificate. One option we could envision would be a fork
in the road approach, which would divide websites that only
support http into two groups: In the first group we have
http websites created before a to-be-determined, fixed date.
In the second group we have all http websites that were
created after said date. A browser could then allow legacy
http connections to websites from the first group but block
connections to websites from the second group. The main issue
with this approach is how to determine the creation time of a
website.

In more detail, the browser connection model could be
adapted to use the following approach: If the connection is
already https, the browser proceeds and connects to load
the website. If the connection, however, is http, the browser
checks the date on which the domain was registered.

We could envision that the browser performs a look-up
query to a service similar to a WHOIS database which stores
information about the creation date. Alternatively, we could
envision a path where every browser ships with a built-in
HTTP Legacy List. This would invert the current opt-
in approach for https supporting websites by removing the
HSTS Preload List because https is the new default.
Including a list that contains legacy websites which are allowed
to be loaded over http, would make up for the compatibility
risks.

This leaves the question of how to build such a legacy list.
It is an open research question on how to collect a list of http
pages without invading user’s privacy by making their clients
report their visited sites. It is also unclear how to determine
the age of such sites without prolonged monitoring. We are
confident that the academic community can help to fix those
problems eventually.

B. Securing Local Network Traffic

Currently, the Web Public Key Infrastructure (PKI) does
not permit a publicly trusted CA to sign a certificate for a local
domain. In more detail, non-publicly resolvable domain names
or also router configuration pages currently have to make a
trade-off decision: either they do not offer https, they rely on
complicated workarounds, or use self-signed certificates which
comes with the downside that end users have to click through
security warnings or go through cumbersome setup steps to
import and mark these certificates as trustworthy. None of
which is desired. Also, we have learned from the success story
of Let’s Encrypt, that once security becomes easy to use it will
find adoption.

The good news is that the web and academic community is
aware of the problem and it’s getting more and more attention.
For example, the topic of securing local traffic was discussed in
a breakout session at the W3C Technical Plenary and Advisory

Committee meeting (TPAC) in 2024 [52]. Further, a proposal
to support HTTPS for Local Domains [53] was submitted at
the Network Working Group in 2024 as well. Earlier works
also include a collection of Approaches to Achieving HTTPS
in Local Network [12] by the now closed HTTPS in Local
Network Community Group [57].

In summary, our measured numbers indicate that https
has become the new default for the web, and we are confident
that the web and academic community will (a) find solutions
for legacy http sites on the open web and (b) find a way
to secure local network traffic to make https not only the
default, but encrypt everything on the internet.

Further research is also necessary to determine if there are
additional issues which need mitigation before https can
become truly ubiquitous.

V. RELATED WORK

Creating an encrypted https connection is fundamental
to providing the necessary security guarantees for any kind of
communication between a browser and a web server. Various
studies [1], [5], [8], [40], [41] conclude that websites not
deploying, or only partially deploying, https expose sensitive
user information to network attackers. The various upgrading
mechanisms presented in Section II aim to mitigate the risk of
exposing private user information to the network by upgrading
and hence encrypting content using https whenever possible.
Thus, the presented upgrading mechanisms not only drive up
https usage but also support websites failing to properly
deploy https for their sites.

Back in 2008, Jackson and Barth were the first to propose
a mechanism [19] that allows web servers to force browsers to
interact with a website only using secure https connections.
This mechanism later served as the foundation for the HSTS
specification [15] which, if properly deployed [21], allows
websites to protect themselves against protocol downgrade
attacks. Besides the downside that the initial request remains
unprotected from active attacks (as discussed in Section II),
HSTS further has the downside that it opens up an additional
tracking vector [38], [55]. It leaks a single bit of information,
whether the browser has cached HSTS information, corre-
sponding to whether a user has visited a site before. The
various in-browser solutions like HTTPS-Only or HTTPS-First
overcome these limitations by automatically upgrading loads,
so that websites are protected by https, including the initial
request.

At this point it is worth pointing out that all auto upgrading
mechanisms have to acknowledge that current web architecture
permits resource requests to return different content when
queried using http or https. As discussed by Paracha et
al. [37] the number of sites that exhibit such behavior is small,
and we argue that this problem will eventually vanish entirely
because using the https protocol is the new default for any
kind of web communication.

Statistics gathered by Porter Felt et al. [9], as well as data
supported by the discussion in III-B, shows that around 50%
of web browsing took place over https in 2017. At that time
Let’s Encrypt reported issuing around half a million certificates
per day. At the end of 2024, Let’s Encrypt reports that their
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free, automated, and open Certificate Authority issues around
five million certificates every day and provides TLS certificates
to over 450 million websites. These numbers again confirm
that https is on the rise and support the claim that https
is becoming the new default on the web.

Browser vendors obviously played a big role in paving
the way for https to become the new default for the web.
For example, every browser eventually deployed a Mixed
Content Blocker [48] which, within a top-level site
loaded over https, blocks http content like scripts and
styles. In 2015, Chen et al. [1] showed that roughly half
of the internet’s most popular sites exposed mixed content
and were thus exposing their users to cookie stealing attacks
and injection of malicious code. The latest iteration of Mixed
Content proposal [48] suggests to automatically upgrade http
sub-resources like audio, video and images to https when the
top-level site is loaded over https. This auto-upgrading of
sub-resources ensures that no mixed content is loaded on the
page and thus avoids the leakage of user sensitive informa-
tion to a third party. As of early 2025, all major browsers,
Safari [58], Chrome [2] and Firefox [31] are shipping this
behavior and automatically upgrade or block all sub-resources
from http to https.

Now browsers not only block mixed content sub-resources,
but also mixed content downloads [29]. Mixed content down-
load blocking ensures that downloads initiated on an https
page cannot use an insecure connection. This is especially
important considering that the potentially insecure URL is
not displayed to the user since there is no address bar for
downloads. Also, browser vendors removed support for the
ftp [30] protocol in the browser. The File Transfer Protocol
(ftp) was, for a long time, a convenient way to exchange
files between computers on a network. However, equivalent to
http, the ftp protocol allowed attackers to steal, spoof and
even modify the transmitted data.

There is no single event or mechanism which magically
improved https adoption. What rather reflects the truth is
that the evolution of the web, steadily over time, allowed and
supported more https connections. The various upgrading
mechanisms, either on the server side, or directly baked into
the browser, ensure that as many connections as possible use
https.

VI. CONCLUSION

We have discussed the state of https adoption on the
web. Evaluating data from over 140 million Firefox release
users, gathered over the course of one month (Firefox 134 in
January 2025) allowed us to present that globally 92.1% of top-
level connections already happen over a secure and encrypted
connection. We showed that 90.4% of those encrypted loads
already started out using an https connection and further
showed that the different client- and server-side mechanisms
allow upgrading an additional 1.7% of connections from http
to https which would otherwise still load using the outdated
and insecure protocol.

We further highlighted that https adoption is on the rise,
though currently varies greatly between different continents
and countries. We showed that the difference of https

adoption ranges from the country with the most measured top-
level https loads Denmark with 98.0% to the country with
the lowest https adoption Sudan with 51.2%.

In summary, we conclude that the web has undergone a
great transformation and while just ten years ago, only 30% of
top level connections happened over https, nowadays more
than nine out of ten connections happen over https. While
there is still progress to be made to have all connections rely
on https, we conclude that https has already become the
new default on the web.
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