
Work-in-Progress: Detecting Browser-in-the-Browser
Attacks from Their Behaviors and DOM Structures

Ryusei Ishikawa
Graduate School of Information Science and

Engineering, Ritsumeikan University
ishikawa@cysec.cs.ritsumei.ac.jp

Soramichi Akiyama
College of Information Science and
Engineering, Ritsumeikan University

s-akym@fc.ritsumei.ac.jp

Tetsutaro Uehara
College of Information Science and
Engineering, Ritsumeikan University

t-uehara@fc.ritsumei.ac.jp

Abstract—Browser-in-the-Browser (BITB) Attacks are a new
phishing attack technique that first surfaced in 2022. This attack
displays an HTML element that mimics a popup window within
a browser, prompting the user to enter confidential information
such as their account and password into a fake login screen.
The popup windows used in this attack have standard browser
features (e.g., minimizing and maximizing) and show spoofed web
pages (e.g., google.com). Because these features also include a fake
URL bar, it is difficult to identify a BITB attack by checking
the domain, unlike traditional phishing attacks. In this paper,
we define four key behaviors of BITB Attacks and propose a
novel detection method based on these behaviors. We also build
a BITB detection system for Blink-based browsers that runs in
real-time. Real-time detection is achieved by our design principle
that leverages the buffer period of the completion of the web page
rendering and the user trying to submit confidential information.
Our evaluation shows that our system can find all 64 BITB PoCs
gathered from GitHub and the TF2 Campaign, which is a real-
world example of BITB Attacks.

I. Introduction
Phishing attacks are a significant security threat. They steal

confidential information, account information, or money via
fake pages or emails [1] [2] from users with marginal IT
literacy. The impact of phishing attacks on companies outstrips
that on individuals because they can leak confidential informa-
tion, install malware, and disrupt business operations [3]. In
addition, the number of phishing attacks nearly doubled from
April 2021 to April 2022 [4].

Although impactful once succeeded, effective countermea-
sures are proposed for many of the existing phishing attacks.
For fake web pages that mimic well-known web pages and
trick users into accessing them [5] [6] to steal confidential
information, checking the domain of the web pages is an
effective countermeasure.

However, there is no effective countermeasure to a re-
cently reported phishing attack named the Browser-in-the-
Browser (BITB) Attack. BITB Attacks were first reported by
mr.d0x in 2022 [7]. As shown in Fig. 1, this attack displays
an HTML element that mimics a popup window within the
browser, prompting users to enter confidential information into

Fig. 1: Example of Browser-in-the-Browser Attacks.

a fake login screen [8]. Concretely, the attacker creates a
web page that offers attractive content, such as discount event
tickets and uses social media to lure the unsuspecting into
accessing it. When they access the page, a message claims
that a login is required to gain benefits, prompting users
to enter their confidential information into a login screen
that is mimicked by a popup window. The domain of this
popup window can be easily spoofed by a previous technique,
rendering existing countermeasures ineffective.

The challenges in detecting BITB Attacks are twofold.
1) Both rule-based and AI-based methods do not straight-

forwardly work. BITB Attacks can be implemented with
various HTML elements (e.g., one can use either div
or iframe to create a popup), making it hard to simply
find them by matching with a few representative patterns.
AI-based methods require a large dataset for training to
begin with, but there is no way to collect them other than
manual inspection of web pages currently.

2) The detection mechanism must work in real-time. Here,
being real-time means that detection must be done before
the user finishes sending confidential information into a
fake popup. Otherwise, the user has to wait until the
detection has finished, which could bother users and make
them stop using a detection mechanism.

To mitigate these challenges, this paper proposes a novel
detection system for BITB Attacks that can robustly detect
attacks in real-time. The main ideas are (1) to investigate the

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2025
28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-9-0
https://dx.doi.org/10.14722/madweb.2025.23010
www.ndss-symposium.org



behaviors of a web page but not the appearance, and (2) to use
the time when the user browses and enters confidential infor-
mation for detection. Here, the behaviors of a web page means
how it reacts to user’s inputs (e.g., clicking a certain button).
This alleviates the need to distinguish different implementation
methods for the same behaviors. We define four key behaviors
of BITB Attacks by analyzing Group-IB’s report [8] and real-
world example of BITB Attacks and propose our method based
on these four key behaviors. The contributions of this paper
are as follows:

1) This paper is the first to propose a detection method for
BITB Attacks as far as we know.

2) Based on the proposed method, we implement a BITB
Attack detection system for Blink-based browsers, named
BitD. It utilizes the Chrome Devtools Protocol and does
not require any modification to the browser or special
libraries so it can be easily used by novice users.

3) We evaluate the detection rate of our method on 64 BITB
Proof-of-Concepts gathered from GitHub and a real-world
example of BITB Attacks. They mimic various browsers
and OSs. Our method could detect all of them as BITB
Attacks while existing AI models could only detect a few
of them.

4) We evaluate the execution time of BitD and found that it
runs with negligible overhead for all the test cases.

II. Research Background

A. Cases of BITB Attacks
Phishing campaigns using BITB Attacks have already been

conducted. The following provides three cases:
1) According to Group-IB’s report [8], a phishing page

used a BITB Attack in 2022 to steal Steam [9] account
credentials. In this phishing campaign, users were di-
rected to a phishing page by a URL posted on Discord
and prompted to login so that they could participate
in PC game tournaments or purchase discount tickets
for events. When they attempted to login, an HTML
element was displayed that mimicked a browser popup.
This pseudo-popup element includes common browser
functions (minimize, maximize, close, TLS certificate
verification, etc.) and displays a fake domain.

2) Google’s Threat Analysis Group explained that they
had already spotted BITB Attacks used by multiple
government-backed actors in March 2022 [10]. This at-
tack is believed to be related to the war in Ukraine and tar-
gets users of the popular Ukrainian portal site (www.i.ua).

3) We discovered a phishing campaign exploiting BITB
Attacks in the wild in 2024. We refer to the discovered
phishing campaign as the TF2 Campaign. Users are
prompted to login to the web page to participate in a
gaming event. We discovered the TF2 Campaign via
a Reddit post [11]. The post attached a screenshot of
the BITB Attack with a URL (e.g., https://tf2workshop.
example.com/login), but that page was no longer working.
So we used a wildcard query for part of the URL (e.g.,

domain:tf2*.example.com) on URLScan [12], and found
several fragmentary files for web pages that seemed to
be identical. By combining these files, we were able to
reconstruct the web pages used in the TF2 Campaign. In
this paper, we refer to these pages as the TF2 dataset.

B. Technical Details of BITB Attacks
This section explains how the BITB Attacks are constituted

by analyzing Group-IB’s report and the TF2 dataset. Web
pages used in BITB Attacks consist of two components:
Pseudo-Popup and Pseudo-Popup Builder.

Pseudo-Popup. The Pseudo-Popup component prompts
users to enter confidential information such as IDs and pass-
words. It consists of the following three elements:

1) HTML Forms
2) Buttons mimicking browser functions
3) A Draggable window
The HTML Forms prompt users to enter IDs and passwords.

This form is created by replicating the login forms of com-
monly used services like Google.

The Buttons mimicking browser functions include maximize,
minimize and other UI elements that are designed to deceive
users that popups are real. Using the User-Agent header from
the user’s HTTP request, these UI elements can be displayed
to match the user’s OS and browser. These buttons can be
implemented using both CSS property modifications and DOM
modifications.

The Draggable window is allows the user to drag the
Pseudo-Popup with their mouse, just like a real browser
window. This is implemented using JavaScript such as an
Element.mousedown event. The Draggable window also
has a fake address bar, a fake title bar, and other fake UI
elements.

Pseudo-Popup Builder. The Pseudo-Popup Builder compo-
nent creates a Pseudo-Popup. This component is primarily
implemented using one of the following two methods:

1) Modification of CSS properties
2) Modification of DOM
In the modification of CSS properties method, CSS proper-

ties that visually remove elements from the browser window,
such as display:none, are pre-set on the Pseudo-Popup
element. When the user clicks a button labeled like Login with
Google, these properties are changed to display the Pseudo-
Popup. In the modification of DOM method, the HTML
elements of the Pseudo-Popup are generated using JavaScript
method such as Document.createElement().

C. Challenges in BITB Attack Detection
Here we elaborate on the challenges in establishing a

countermeasure against BITB Attacks to motivate our work.
We identify two categories of challenges.

First, both rule-based and AI-based methods do not straight-
forwardly work. This can further be drilled down as follows.

1) BITB Attacks cannot be detected by merely checking
the domain of a web page, unlike traditional phishing

2



Fig. 2: Popup window title bar that mimics a browser window
(Top: Windows, Bottom: macOS).

attacks. As shown in Fig. 2, the Pseudo-Popup of a BITB
Attack has a user interface that resembles a regular popup
window. Therefore, the attacker can trick a user into
believing the spoofed domain shown in a fake URL bar.

2) BITB Attacks are implemented using standard HTML,
CSS, and JavaScript with no special JavaScript APIs or
browser APIs used. This makes it hard to distinguish them
from legitimate web pages. In addition, BITB Attacks can
be implemented in various types of HTML elements.

3) It is difficult to maintain a blocklist of known suspicious
web pages because an attacker can create a BITB Attack
on any domain, regardless of the domain that it spoofs
(e.g, google.com).

4) Existing AI models are trained on general phishing web
pages. This means that using them for detecting BITB
Attacks yields low accuracy. This will be proven in
Section V-C.

Second, the cost that can be spent on a detection mechanism
is marginal. This can further be drilled down as follows.

1) Since BITB Attacks target individuals with low IT liter-
acy, the deployment cost of such a detection mechanism
should be relatively low so that a normal daily user could
handle it.

2) To prevent the transmission of confidential information
without letting the user wait, the detection mechanism
should run in real-time.

D. Related Work

mr.d0x [7] defined the BITB Attack and published the first
Proof of Concept (PoC). They describe two countermeasures
for it. The first is to drag popup windows to the edge of
the browser because those created by a BITB Attack cannot
be dragged outside the actual browser frame. However, this
method’s effectiveness depends on the IT literacy of the user.
The second uses a browser extension by Andrew [13]. This
method only investigates a few elements (iframe, frame,
embed, and object), but BITB Attacks can be implemented
without relying on them, making this method insufficient.

There is research on rule-based detection of BITB Attacks.
Alessa et al. [14] analyzed the mechanism and threat level
of the BITB Attacks, proposing countermeasures. However,
their proposed countermeasures are similar to those suggested
by mr.d0x, making them insufficient. Asheesh et al. [15]
proposed a rule-based phishing detection algorithm called
PhishSpy, which can detect various phishing attacks, including

BITB Attacks. However, their detection method resembles
Andrew’s [13], making it easily circumvented.

Phishing detection based on machine learning has been
proposed, but they are not yet mature enough to detect BITB
Attacks. Asiri et al. [16] proposed a real-time phishing de-
tection system using machine learning called PhishingRTDS.
They claim that it can detect three types of phishing attacks
including BITB Attacks. Nevertheless, PhishingRTDS utilizes
datasets from general phishing sites that appeared in 2020 for
training and evaluation, whereas BITB Attacks is a technique
that was publicly disclosed in 2022 [7]. Therefore, this dataset
does not sufficiently include BITB Attacks, and it is unclear
whether BITB Attacks are being detected. Liu et al. [17]
proposed PhishIntention, which uses machine learning to infer
the intent of each component from screenshots of phishing
pages. PhishIntention cannot detect BITB Attacks, because the
appearance of BITB Attack web pages does not differ from
web pages implementing legitimate login popups. As shown
in Section V-C, this methods have low detection rates for BITB
web pages.

III. Key Behaviors of BITB
Based on the Group-IB’s report [8], we identify four out-

standing behaviors of BITB Attack web pages as follows.
• When a user clicks the login button, a Pseudo-Popup is

displayed.
• Words commonly used on login pages, such as Login, are

displayed.
• A form requires the users to input confidential informa-

tion.
• Confidential information is transmitted over the Internet.
The main idea of our work is that the above four behaviors

can be found automatically and robustly to detect a BITB
Attack. To achieve this, we search for HTML elements that
satisfy the following four criteria from a web page under
suspicion:

1) Post Rendering: elements created after the web page’s
rendering is completed;

2) Vocabulary in Screenshot: elements that contain specific
words in their screenshots;

3) Inputtable: elements where the user can input text;
4) Send-to-External: the text entered by users is sent over

the Internet.
Post Rendering refers to elements created when the user

clicks a button or triggers a timer (e.g., setTimeout). In
a typical legitimate web page, popup windows are created by
user activation.

Vocabulary in Screenshot refers to elements that display
specific words, such as Login. We refer to such words as
Login Vocabulary. A Pseudo-Popup implementing a login
screen often includes Login Vocabulary. We use screenshots
of elements to detect Login Vocabulary because an attacker
could convert them to images and display them to users to
evade text-based detection mechanisms.

Inputtable refers to elements that allow text input, such as
input tags. This element must be detected because phishing

3



pages aimed at stealing confidential information always require
users to input text.

When the elements satisfying these criteria also execute the
Send-to-External action, they are determined to be a BITB
Attack. This action sends the content entered by the user to
a server on the Internet. Web pages conducting BITB Attacks
always send confidential information over the Internet.

IV. BitD: A Detection System
A. Proposed System

We propose BitD, a robust detection system for detecting
BITB Attacks in real-time. Fig. 3 shows the overview of BitD.
When the user opens a web page, BitD first executes the
Initialize Detectors function, then it retrieves the DOM of the
opened web page and generates instances of each detector.
After initialization, BitD Detect Loop stage and the Send-to-
External stage begin. During this stage, the Post Rendering
Element Detector first detects the Post Rendering elements,
then detects the Vocabulary in Screenshot elements and the
Inputtable elements, and saves each detector results except
the Send-to-External Detector in the Detector Result Holder.
This stage is repeatedly executed every two seconds since this
was the optimal interval time based on our experiment results.
Finally, the BITB Classifier at the end of the whole detection
system determines whether or not the web page conducts the
BITB Attacks based on the results of all Detectors output. The
Send-to-External Detector identifies whether the information
entered by the user is sent over the Internet. It monitors all the
network requests sent from the browser and treats any request
containing the user’s input as a Warning Request. If a Warning
Request is detected, this request is temporarily blocked, then
the results from each detector are retrieved from the Detector
Result Holder. If all the target elements are detected, an alert
is triggered for a BITB Attack. If it is determined not to be a
BITB Attack, the paused network request will then be resumed.

BitD is designed to operate in real-time by using the
following methods:

1) BitD pre-executes each detector before the user submits
their confidential information so that it can display an
alert at the moment confidential information is sent.

2) BitD does not need to retrieve the entire DOM even if
it is updated. BitD caches the entire DOM, and it only
retrieves the modified parts when it is updated.

B. Detection of Post Rendering Elements
This function is achieved by periodically detecting modified

or newly appended elements that are rendered through the CSS
property or DOM. It monitors the states of the CSS properties
that could remove visible elements from the browser window.
To collect browser behaviors, we use the Chrome Devtools
Protocol (CDP) [18].

C. Detection of Vocabulary in Screenshot Elements
BitD takes screenshots of multiple DOM elements detected

in Section IV-B and processes them through Optical Character
Recognition (OCR) to check if the elements contain any

Login Vocabulary. OCR is performed using the Tesseract
OCR [19]. Login Vocabulary is a set of words frequently used
on login pages. The methods of obtaining this vocabulary
are as follows: (1) Collect the content of popular login pages
from a domain ranking [20]. (2) Extract vocabulary that
appears 10 times or more, and then remove non-alphabetic
characters and words with three or fewer letters. We obtain the
following 11 words as Login Vocabulary as a result: email,
sign, password, privacy, forgot, account,
policy, google, help, username, phone.

D. Detection of Inputtable Elements

This detector searches for Inputtable elements that are text
input elements such as input and textarea. This detector
scans the DOM for Inputtable elements, and then extracts
only ones that are child elements of the elements detected in
Section IV-B. This is to exclude Inputtable elements outside
of the fake popup window.

E. Detection of Send-to-External Actions

We inspect the value of input elements and network requests
on web pages to detect the transmission of confidential infor-
mation to be sent over the Internet. The issue here is that
CDP cannot directly obtain user’s input. To avoid this, we use
the following two steps: (1) obtaining the user’s input and (2)
inspecting the network request.

In step (1), the user’s input is obtained by the JavaScript
runtime and then sent to the CDP runtime. The sub-issue here
is that CDP does not provide an easy means of communication
between the JavaScript runtime to do so. The idea is to use
the JavaScript runtime to send the user’s input to the network,
and then the CDP runtime captures this request to obtain the
user’s input. In other words, the JavaScript runtime sends the
user’s input twice: once for BitD to receive, and once for the
attacker. To capture user’s input sent to the network, we add
an unique header to distinguish a request containing the user’s
input from general ones (e.g., fetching an HTML). Requests
containing user’s input are discarded after being received by
BitD, while general requests (e.g., fetching an HTML, image)
are sent to the Internet as-is.

In step (2), BitD interrupts all requests that the web pages
tries to send to the Internet. If a request contains the same
information as user’s input obtained in step (1), this request is
discarded to prevent a BITB Attack.

V. Evaluation

A. Prerequisite for Detection

To evaluate the performance of BitD’s detection capability,
we collected a total of 64 working BITB PoCs from nine
repositories from GitHub, in addition to the TF2 dataset. Fig. 4
shows a few examples of collected BITB PoCs.

Some BITB PoCs were incomplete and did not work.
Therefore, the following modifications were made to meet the
necessary conditions.

4



Fig. 3: The system overview of BitD. Data flows are represented by solid lines.

(a) omerwwazap [21] (b) surya-dev-singh [22]

Fig. 4: Example of BITB PoCs.

1) Modified the value of the src attribute in the iframe
from a dummy URL to the URL of a server hosting a
well-crafted fake login page mimicking Google [23].

2) Modified the Pseudo-Popup to be displayed when the user
presses a button.

3) Modified the button element in the login form to send
user’s input to the Internet.

4) Changed the language to English.
5) Ensure that elements within an iframe do not affects

elements outside the iframe. For example, pages that
perform redirects during login should not redirect to the
outside of the iframe.

B. Detection Result

TABLE I shows the detection results and each PoC reposi-
tory contained multiple versions of BITB PoCs with different
variations of browsers and OSs. The total number of tested
and detectable variations is shown in the Detectable column
of the table.

The result of the experiment shows that BitD detected all
64 BITB PoCs and the TF2 dataset. We draw four takeaways
from the results:

• BitD could detect BITB Attack pages that mimic the
browser windows on both macOS and Windows.

• BitD could detect BITB Attack pages that mimic both
dark and light modes of the browsers.

• BitD could detect BITB Attack pages that mimic the UI
interface of both Google Chrome and Firefox browsers.

• BitD could detect Pseudo-Popups that mimic the login
pages of various web services.

200 400 600 800 1,000 1,200 1,400

1,000

2,000

3,000

4,000
𝑅 = 0.17

Number of DOM nodes

Ex
ec

ut
io

n
tim

e
of

Vo
ca

bu
la

ry
in

Sc
re

en
sh

ot
[m

s]
Fig. 5: Relationship between number of nodes in the DOM
and execution time of Vocabulary in Screenshot Detector.

C. Applying Existing AI Models for Detection

To prove that existing AI models do not work well in
detecting BITB Attack pages, we applied two existing models
(StackModel [31] and PhishIntention [17]) to nine BITB PoCs
and the TF2 dataset. The PoCs are extracted from the ones we
use in our experiments in Section V-B. We selected one PoC
from each repository so that we could verify a variety of OSs,
browsers, and services. As a result, PhishIntention could only
detect two ([29] and [22]) out of the ten web pages, while
StackModel could detect none.

D. Execution Time

We measured its execution time in a typical client environ-
ment as part of the experiment (OS: macOS Sonoma 14.4.1,
CPU: Apple M1, Browser: Google Chrome 125.0.6422.78
(arm64), Compiler: Deno [32] 1.43.3).

We measured the execution time of each detector for the 64
PoCs and investigated the correlation between the execution
time of each detector and the number of DOM nodes. The
Initialize BitD Detectors function had an average execution
time of 31 ms, and the correlation coefficient was 0.22 ms.
The results of the execution time experiment for Vocabulary
in Screenshot Detector are shown in Fig. 5 (the 𝑅 parameter
means the correlation coefficient). This time is almost the same
as the execution time of the OCR component. The execution
time of other detectors are not shown for brevity because they
are negligible compared to the above two.

5



TABLE I: Detection result of BITB PoCs and TF2 dataset.

BITB PoC Repository / TF2 dataset OS Browser Service Detectable Mod.
TF2 dataset Windows Chrome-LightMode Steam 3 (1/1)
Davidc96 / LogOoops [24] macOS Chrome-Dark/LightMode Google 3 (2/2)

Windows
Chrome-Dark/LightMode
Firefox-LightMode

Google
Google

3 (3/3)

mrd0x / BITB [25] macOS Chrome-Dark/LightMode Google 3 (2/2) ※1, ※2

Windows Chrome-Dark/LightMode Google 3 (2/2) ※1, ※2
Chrome-DarkMode Google (another ver.) 3 (1/1) ※1

lucthienphong1120 / BITB-Phishing [26] macOS Chrome-Dark/LightMode Google 3 (2/2) ※1, ※4
Windows Chrome-Dark/LightMode Google 3 (2/2) ※1, ※4

warren2i / bitb [27] macOS Chrome-Dark/LightMode Reddit 3 (2/2) ※1

Windows Chrome-Dark/LightMode
Chrome-DarkMode

Reddit
Reddit (another ver.)

3 (3/3) ※1

vikashchand / browser-in-the-browser-attack [28] Windows Chrome-DarkMode Microsoft 3 (1/1) ※1
daniseis4 / browser-in-the-browser [29] Windows Chrome-Dark/LightMode Microsoft 3 (2/2) ※3
deFr0ggy / BITB-Browser-In-The-Browser-Attack [30] macOS Chrome-DarkMode Original 3 (1/1) ※3
omerwwazap / BITB [21] Windows Chrome-DarkMode Turkcell 3 (1/1) ※4

surya-dev-singh / BITB-framwork [22] Windows Chrome-DarkMode Facebook, Instagram,
... and 40 services

3 (40/42)
Not Working (2/42)

※5

VI. Discussion
A. Undetectable BITB Attack Patterns

In this section, we consider three different BITB Attack
patterns that were not included in our test cases and also the
ones that BitD might fail to detect due to the limitations of
the proposed method.

Pattern 1: If the Pseudo-Popup appears immediately after a
web page is rendered, it cannot be detected as a Post Rendering
element. This is because Post Rendering Detector only focuses
on changes in the DOM. In practice, login popup windows are
created by user activation [33]. Therefore, if a Pseudo-Popup
is found immediately after the web page is rendered, it does
not mimic the behavior of a real browser.

Pattern 2: In the TF2 dataset, confidential information was
transmitted without encoding. However, for certain real-life
scenarios, confidential information may sent by the attacker’s
script in the encoded form. Since the proposed method checks
the transmitted content, if encoding is performed on the client
side before transmission, our method will not work. We could
tackle this issue by applying taint analysis (e.g., [34]) to track
user’s input.

Pattern 3: In order to detect the Inputtable elements, BitD
searches for input and textarea tags. However, various
other methods can be used to realize a text input mechanism
on a web page, such as the contenteditable attribute.
Nevertheless, BitD could also address other input methods
with the knowledge of related HTML specifications.

B. BitD’s Performance
The bottleneck in the execution time of BitD is the Vo-

cabulary in Screenshot Detector, which takes around 2000-
3000 ms. This is sufficiently fast because it can be completed
between the time a typical user opens the page and the time
the confidential information is finished inputting and about to
be sent.

VII. Future Work

First, a large dataset of BITB Attack web pages in the
wild must be constructed to improve machine-learning based
detection mechanisms. Because our method mainly focuses on
the behavior of web pages, a legitimate web page that satisfies
all of the behaviors we define can be falsely detected as a
BITB Attack. By combining machine learning techniques that
investigate the appearances of web pages, this type of false
positive could be decreased. In order to construct a dataset,
our system could be utilized to crawl the Internet to find more
BITB Attack in the wild besides the TF2 campaign.

Second, our system must be embedded into browsers in
order for it to be deployed to the real-world. To this end,
the reliance of BitD on running Chrome in the debug mode
must be removed. A better implementation method would be
to implement BitD as a series of patches to an OSS browser
such as Chromium.

Third, Login Vocabulary must be more carefully collected to
reduce false positives. The current Login Vocabulary contains
words that are likely to cause false positives, such as google
and help.

VIII. Conclusion

For this research, we proposed a robust detection method
specifically for Browser-in-the-Browser Attacks. To evaluate
the general performance of BitD, we conducted a series of
experiments on BITB PoCs alongside real-world dataset. The
overall experiment results showed that not only does BitD
successfully maintain the high accuracy that was reflected
by the result of being able to detect all of the suspicious
activities hidden inside the experiment cases, but it also has
the capabilities to operate quickly.

Therefore, it is confident to say that the proposed method
is an effective approach for detecting the BITB Attacks.

6



References

[1] R. Zieni, L. Massari, and M. C. Calzarossa, “Phishing or not phishing?
a survey on the detection of phishing websites,” IEEE Access, vol. 11,
pp. 18499–18519, 2023.

[2] J. S. Tharani and N. A. Arachchilage, “Understanding phishers’ strategies
of mimicking uniform resource locators to leverage phishing attacks: A
machine learning approach,” SECURITY AND PRIVACY, vol. 3, no. 5,
p. e120, 2020.

[3] M. A. Qbeitah and M. Aldwairi, “Dynamic malware analysis of phishing
emails,” in 2018 9th International Conference on Information and
Communication Systems (ICICS), pp. 18–24, 2018.

[4] “Phishing activity trends report, 1st quarter 2022.” https://docs.apwg.org/
reports/apwg trends report q1 2022.pdf. (Accessed on 05/21/2024).

[5] E. Lin, S. Greenberg, E. Trotter, D. Ma, and J. Aycock, “Does domain
highlighting help people identify phishing sites?,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’11, (New York, NY, USA), pp. 2075–2084, Association for Computing
Machinery, 2011.

[6] F. Barr-Smith and J. Wright, “Phishing with a darknet: Imitation of onion
services,” in 2020 APWG Symposium on Electronic Crime Research
(eCrime), pp. 1–13, 2020.

[7] “Browser in the browser (bitb) attack — mr.d0x.” https://mrd0x.com/
browser-in-the-browser-phishing-attack/. (Accessed on 05/23/2024).

[8] “Letting off steam — group-ib blog.” https://www.group-ib.com/blog/
steam/. (Accessed on 05/22/2024).

[9] “Steam website.” https://store.steampowered.com/. (Accessed on
05/23/2024).

[10] “Tracking cyber activity in eastern europe.” https://blog.google/
threat-analysis-group/tracking-cyber-activity-eastern-europe. (Accessed
on 01/03/2025).

[11] “Spotting a browser-in-the-browser (bitb) phishing attack : r/steamscams.”
https://www.reddit.com/r/SteamScams/comments/1drvt34/spotting a
browserinthebrowser bitb phishing. (Accessed on 01/03/2025).

[12] “Search - urlscan.io.” https://urlscan.io/search/#domain%3Atf2*.pages.
dev. (Accessed on 01/03/2025).

[13] “Malwarecube/enhanced-iframe-protection: A lightweight extension to
automatically detect and provide verbose warnings for embedded iframe
elements in order to protect against browser-in-the-browser (bitb)
attacks..” https://github.com/MalwareCube/enhanced-iframe-protection.
(Accessed on 05/23/2024).

[14] K. Alessa, B. Alhetelah, G. Alazman, A. Bader, N. Alhomeed, L. Al-
mubarak, and F. Almulla, “Browser-in-the-browser (bitb) attack: Case
study,” Journal of Engineering Research and Sciences, vol. 3, pp. 14–22,
05 2024.

[15] A. Tiwari, V. Chaturvedi, R. K. Gupta, and P. Upadhyay, “Phishspy – a
phishing detection tool and defensive approaches,” in 2022 International
Conference on Industry 4.0 Technology (I4Tech), pp. 1–6, 2022.

[16] S. Asiri, Y. Xiao, S. Alzahrani, and T. Li, “Phishingrtds: A real-time
detection system for phishing attacks using a deep learning model,”
Computers & Security, vol. 141, p. 103843, 2024.

[17] R. Liu, Y. Lin, X. Yang, S. H. Ng, D. M. Divakaran, and J. S. Dong, “In-
ferring phishing intention via webpage appearance and dynamics: A deep
vision based approach,” in 31st USENIX Security Symposium (USENIX
Security 22), (Boston, MA), pp. 1633–1650, USENIX Association, Aug.
2022.

[18] “Chrome devtools protocol.” https://chromedevtools.github.io/
devtools-protocol/. (Accessed on 05/28/2024).

[19] “tesseract-ocr/tesseract: Tesseract open source ocr engine (main
repository).” https://github.com/tesseract-ocr/tesseract. (Accessed on
05/28/2024).

[20] “Domain rankings — cloudflare radar.” https://radar.cloudflare.com/
domains. (Accessed on 05/31/2024).

[21] “omerwwazap/bitb: Browser in the browser (bitb) attack - turkcell
fastlogin/hızlıgiriş.” https://github.com/omerwwazap/BITB. (Accessed
on 05/30/2024).

[22] “surya-dev-singh/bitb-framwork.” https://github.com/surya-dev-singh/
BITB-framwork. (Accessed on 06/01/2024).

[23] “lucthienphong1120/google-login: Demo google login form.” https://
github.com/lucthienphong1120/google-login. (Accessed on 06/01/2024).

[24] “Davidc96/logooops: Tool to perform browser-in-the-browser attacks.”
https://github.com/Davidc96/LogOoops. (Accessed on 06/13/2024).

[25] “mrd0x/bitb: Browser in the browser (bitb) templates.” https://github.com/
mrd0x/BITB. (Accessed on 05/30/2024).

[26] “lucthienphong1120/bitb-phishing: Browser in the browser (bitb) attack
is a sophisticated phishing and hard to detect..” https://github.com/
lucthienphong1120/BITB-Phishing. (Accessed on 05/30/2024).

[27] “warren2i/bitb: Command line generation browser in the browser exploit
framework.” https://github.com/warren2i/bitb. (Accessed on 05/30/2024).

[28] “vikashchand/browser-in-the-browser-attack.” https://github.com/
vikashchand/browser-in-the-browser-attack. (Accessed on 05/30/2024).

[29] “daniseis4/browser-in-the-browser.” https://github.com/daniseis4/
browser-in-the-browser. (Accessed on 05/30/2024).

[30] “defr0ggy/bitb-browser-in-the-browser-attack: A recent browser in
the browser attack working example!.” https://github.com/deFr0ggy/
BITB-Browser-In-The-Browser-Attack. (Accessed on 05/30/2024).

[31] Y. Li, Z. Yang, X. Chen, H. Yuan, and W. Liu, “A stacking model using
url and html features for phishing webpage detection,” Future Generation
Computer Systems, vol. 94, pp. 27–39, 2019.

[32] “Deno, the next-generation javascript runtime.” https://deno.com/. (Ac-
cessed on 05/29/2024).

[33] “Html standard.” https://html.spec.whatwg.org/multipage/interaction.
html#tracking-user-activation. (Accessed on 01/15/2025).

[34] “perlsec - perl security - perldoc browser.” https://perldoc.perl.org/perlsec.
(Accessed on 01/03/2025).

7


