
Work-in-Progress: Manifest V3 Unveiled: Navigating
the New Era of Browser Extensions

Nikolaos Pantelaios
North Carolina State University

npantel@ncsu.edu

Alexandros Kapravelos
North Carolina State University

akaprav@ncsu.edu

Abstract—Introduced over a decade ago, Chrome extensions
now exceed 200,000 in number. In 2020, Google announced a shift
in extension development with Manifest Version 3 (V3), aiming
to replace the previous Version 2 (V2) by January 2023. This
deadline was later extended to January 2025. The company’s
decision is grounded in enhancing three main pillars: privacy,
security, and performance. This paper presents a comprehensive
analysis of the Manifest V3 ecosystem. We start by investigating
the adoption rate of V3, detailing the percentage of adoption
from its announcement up until 2024. Our findings indicate,
prior to the 2023 pause, less than 5% of all extensions had
transitioned to V3, despite the looming deadline for the complete
removal of V2, while currently nine out of ten new extensions
are being uploaded in Manifest V3. Furthermore, we compare the
security and privacy enhancements between V2 and V3 and we
evaluate the improved security attributable to V3’s safer APIs,
examining how certain APIs, which were vulnerable or facilitated
malicious behavior, have been deprecated or removed in V3. We
dynamically execute 517 confirmed malicious extensions and we
see a 87.8% removal of APIs related to malicious behavior due
to the improvements of V3. We discover that only 154 (29.8%) of
these extensions remain functional post-conversion. This analysis
leads to the conclusion that V3 reduces the avenues for abuse
of such APIs. However, despite the reduction in APIs associated
with malicious activities, the new Manifest V3 protocol is not
immune to such behavior. Our research demonstrates, through
a proof of concept, the adaptability of malicious activities to V3.
After the proof of concept changes are applied, we showcase 290
(56%) of the examined malicious extensions retain their capability
to conduct harmful activities within the V3 framework. They
can achieve this by incorporating web accessible resources, a
method that facilitates the injection of third-party JavaScript
code. Conclusively, this paper also pioneers by documenting the
impact of user and community feedback in the transition from
V2 to V3, analyzing the percentage of initial issues that have
been resolved, and proposing future directions and mitigation
strategies for the continued evolution of the browser extension
ecosystem.

I. INTRODUCTION

Browser extensions have become an integral component of
today’s web browsing experience, offering a range of function-
alities that enhance user productivity and security. The typical
browser user often has multiple extensions installed, spanning
various categories such as ad blockers like uBlock Origin [36],

password managers such as LastPass [26], and productivity
tools like BlockSite [9]. These extensions are of particular
interest to the web security community due to their access to
high-privilege APIs. These APIs enable extensions to modify
web pages and bypass the browser’s Same Origin Policy
(SOP), among other capabilities. Consequently, a persistent
challenge for webstore platforms is distinguishing between
benign and malicious extensions and effectively mitigating the
latter before they impact users.

To tackle the existing problem of extensions violating
user’s privacy and browser security, Google announced in
2020 changes in extensions design, reflected by upgrading
Manifest version 2 (Manifest V2 or just V2) to Manifest
version 3 (Manifest V3 or just V3). Google’s transition from
Manifest V2 to V3, initially planned for early 2023 but delayed
to address developer concerns, aimed to enhance Chrome’s
extension ecosystem’s security, privacy, and performance. V3
faced criticism for potentially impacting ad blockers and other
extensions, leading to a more nuanced rollout. In contrast,
Firefox implemented V3 differently, focusing on preserving
ad-blocker functionality. As of late 2023 and early 2024,
Google continued refining V3 based on community feedback,
aiming to balance security improvements with the functionality
desired by extension developers and users.

The transition to V3 has sparked diverse reactions, particu-
larly among developers. Key changes in V3 include the discon-
tinuation of third-party code inclusions and the replacement
of certain APIs, which, while aimed at enhancing security,
have raised concerns about potential compatibility issues and
limitations in extension functionality. One of the most notable
changes is the shift from the webRequest API to declarativeN-
etRequest, which, despite aiming for improved performance
and privacy, has introduced complexities and bugs, potentially
impacting the security of V3. Additionally, the new protocol
limits extension collaboration, posing challenges for privacy-
related extensions which now face restrictions in filter cat-
egories and request rates. These changes, while designed to
streamline extension capabilities, have inadvertently limited
their functionality and interoperability. Furthermore, the need
for privacy-related extensions to maintain dynamic blocklists
within the extension code has introduced additional overhead
and frequent updates, possibly affecting browser performance
and the web developer experience. V3’s categorization encom-
passes remote code inclusion, API changes, content security
policy (CSP) rules, and the introduction of service workers.
Notably, the prohibition of third-party JS code inclusion and
the alterations in API usage, like the restricted usage of xhr

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2024
1 March 2024, San Diego, CA, USA
ISBN 979-8-9894372-2-1
https://dx.doi.org/10.14722/madweb.2024.23080
www.ndss-symposium.org

Publications
& Reports

Extension
DB

Dynamic
Execution

v2 Malicious
DatasetA

v2 Malicious
DatasetB

Extension
v3

Conversion

Dynamic
Execution

v3 Malicious
Dataset

Fig. 1. A full description of our architecture including the data collection process, the conversion to Manifest V3 and the dynamic analysis stage.

and executeScript, signify a considerable shift in extension
development. The stringent CSP rules in V3, particularly the
deprecation of the unsafe-eval rule, further dictate the security
landscape, restricting arbitrary code execution. Lastly, replac-
ing background scripts with service workers aims at enhancing
browser performance, though it introduces complexities in
extension behavior and performance dynamics.

In our research, we extensively analyze the Manifest V3
ecosystem, focusing on the adoption rate and the security and
privacy enhancements over V2. Our study involves converting
V2 malicious extensions to V3 and dynamically analyzing
them. Notably, we find that V3’s implementation results in
the removal of 87.8% of APIs related to vulnerable or mali-
cious behavior, demonstrating a significant increase in security.
However, our dynamic testing reveals that some extensions still
manage to exhibit malicious behavior in V3, highlighting the
need for ongoing vigilance in the extension ecosystem despite
the considerable security improvements.

Our study compiles a total of 517 malicious V2 extensions
from dynamic analysis and prior research. We then adapt these
extensions to V3, following rule-based conversions outlined in
official documentation. Our dynamic testing reveals that 154
(29.8%) of these extensions remain functional post-conversion.
Moreover, 290 (56%) extensions can function in V3 with a
web accessible resources declaration in the manifest file. The
full extent of our architecture can be found in Figure 1 and
we open source our dataset in Github 1.

Our paper makes the following contributions:

• We showcase the improvement of V3 against V2, with
87.8% of the APIs related to malicious or vulnerable
JavaScript code not being available in V3 due to
deprecation or replacement of those APIs

• We present a proof of concept to include 3rd-party
resources in extensions developed in Manifest V3 to

1Link to Github

study malicious code that can still exist in the new
ecosystem and propose mitigations

• We present the first study on the evolution and the
adoption rate of the new Manifest V3 extension design
over the past four years it was announced

• We open-source our historical dataset with the mali-
cious extensions in both the Manifest V2 and Manifest
V3 versions for future comparisons and to kickstart
future research on this domain

II. BACKGROUND

A. Manifest V3 Community Collaboration

Google’s development of Manifest V3 focuses on en-
hancing the security, privacy, and performance of browser
extensions, with promises of improvements acknowledged in
their statement and supported by sources like Ghostery [4], [1].
Google’s iterative improvements to V3, such as the transition
to the declarativeNetRequest API and adjustments to cosmetic
rules filters, demonstrate their commitment to refining the ex-
tension platform while addressing developer concerns. Efforts
to maintain and enhance extension capabilities, alongside a
responsive strategy to community feedback, show Google’s
dedication to evolving the extension ecosystem to meet se-
curity and privacy standards effectively.

B. Categorizing Manifest V3 Changes

Code Inclusion A key change in Manifest V3 is the prohi-
bition of third-party JavaScript (JS) code inclusion, targeting
extensions that inject third-party code. Only code bundled
with the extension is permitted, with web accessible resources
declarations allowing for limited third-party interactions.

API Changes Manifest V3 introduces API modifications
like replacing webRequest with declarativeNetRequest and
restricting xhr usage, enhancing security and performance. The

2

https://github.com/anonymousSubmitterSudo/malicious_v2_v3_extensions

Malicious category Have source code
(multi-labels)

Click scam 33
Ad replacement 112

User data analytics 356
Credentials stealing 3

Browser modification 111
Other 90(crypto, mining, gambling, phishing)

Total (unique) 517
TABLE I. MALICIOUS EXTENSIONS CATEGORIES BASED ON MANUAL
LABELING. EACH MALICIOUS EXTENSION CAN HAVE MULTIPLE LABELS.

executeScript API moves to scripting, and several APIs are
deprecated or replaced to improve security [2], [17], [5].

CSP Rules Manifest V3 tightens CSP rules, notably depre-
cating unsafe-eval and narrowing permissible CSP values to
enhance security.

Service Workers The shift to service workers from back-
ground scripts aims to boost performance and align with
browser architectures, emphasizing asynchronous, event-driven
operations [3].

C. Extensions Structure

The source code of an extension is comprised of a combi-
nation of JavaScript (JS), HTML, CSS files, media files, and
JSON files. The central configuration file, known as mani-
fest.json, specifies the extension’s permissions. This manifest
file delineates all the JS files associated with the extension.
In Manifest V2, these JS files are categorized as content
scripts and background scripts. However, in Manifest V3, the
background scripts have been replaced by service workers. The
key distinction between these lies in the set of APIs accessible
to each script and the context in which the script operates.

Following the specification of all the JS and media files
used by the extension, it is submitted to the webstore for
approval. Once accepted, the extension is assigned a unique
32-byte hash identifier, referred to hereafter as the ’id’.

D. Tools

Playwright [31] is a browser automation tool that operates
in a secure and isolated environment. Playwright is capable of
simulating a variety of browsers, including Chrome, Firefox,
Opera, Safari, and Edge. While our analysis currently focuses
solely on Chrome extensions, we utilize Playwright to facilitate
potential future expansions to other browsers. We utilized
Playwright for installing extensions while emulating browser
behavior. Due to the high volume of requests generated during
simulation, we employed a webpage record and replay tool
named Catapult [13] to minimize redundant requests.

For testing all malicious extensions in Manifest V3, a
conversion process from V2 is necessary. This conversion
utilizes a blend of pre-existing tools and our own modifications
to address specific cases not covered by standard tools. The
foundation of our conversion process is the extension manifest
converter tool [19], which translates both the manifest and JS
files. Key manifest fields we convert include host permissions,

Fig. 2. Number of V3 extensions in our database over time

content security policy, background.script, and sandbox. Ad-
ditionally, for APIs, we adapt browser action to action,
tabs.executeScript to scripting, and modify tabs.insertCSS.

III. MALICIOUS EXTENSION DATASET

A. Extension Sources from Past Reports

To create our dataset, we source extensions from vari-
ous origins, predominantly security companies and previous
scientific studies. Our collection focuses on malicious exten-
sions, categorized based on their reported activities. The main
source of our dataset is a resource gathered from previous
malicious extension reports from the past seven years [41].
This collection comprises hashes of extensions organized based
on significant incidents within the malicious ecosystem. This
collection of reports offers information on malicious extension
packages and has been utilized in prior research [46].

These reports include extensions stealing user data [39],
[8], acquiring Facebook information [40], capturing sensitive
data [24], [34], spying on users [16], compromising creden-
tials [38], [29], exploiting Chrome features [7], and bypassing
authentication [22], [35]. Noteworthy in our collection is The
Great Suspender, implicated in user data theft [27], [37],
and extensions targeting accounts and passwords [6], [25],
including those from foreign entities like North Korea [18].

B. Our Historical Dataset

Although the resource provides access to reports on mali-
cious extensions, it lacks the source code. Therefore, we main-
tain a historical dataset of extension source codes. To compile
this dataset, we download all extensions from the webstore that
were updated in the last 24 hours, every day. Over six years,
this method has enabled us to gather a comprehensive dataset
that includes a total of 289,000 extensions. This dataset serves
as a valuable tool for conducting detailed analyses, queries,
and comparisons between various versions of extensions.

Using this historical dataset, we have been able to identify
malicious versions for 517 IDs. Our dataset is the main
source for identifying 85% of these malicious extensions. The
remaining 15% are identified with the help of the chrome-
stats.com tool [14], which assists in finding versions that our
dataset does not cover.

3

20
21

-01

20
21

-05

20
21

-09

20
22

-01

20
22

-05

20
22

-09

20
23

-01

20
23

-05

20
23

-09

Date

0

20

40

60

80

V3
 M

an
ife

st
 A

do
pt

io
n

(%
)

0% 0% 2% 5% 7% 5%
11%

7%

23%
19%

25%
19%

25%

36% 36%34%
41%

59% 61%63%

51%

77%
71% 72%

79% 82% 82%82% 85%88%
92%92%

84% 81%

89% 90%

Fig. 3. Manifest V3 monthly update rate over the past four years to showcase
how fast the adoption is happening.

IV. METHODOLOGY

A. Architecture

In Figure 1, we present the complete architecture and
methodology used in this study. The process starts with the
collection of malicious data in the Manifest V2 format. We
then develop a converter to transition these extensions to the
Manifest V3 compatible ecosystem. After the conversion, we
run each extension through a dynamic analysis tool. This step
ensures the conversion’s success and checks if the default
settings can monitor the malicious behavior. We run it on
URLs the extension has access to run on to ensure function-
ality. Finally, if malicious behavior exists in the Manifest V3
ecosystem, we perform a manual verification.

B. Gathering & Verifying the Malicious Datasets

As outlined in the data analysis section (§ III-A), due to
the scarcity of reports on malicious Manifest V3 extensions,
our investigation centers on those developed in Manifest V2.
Initially, we merge our two partial datasets to create the final
dataset. To analyze these extensions, we utilize Playwright for
automating a browser environment. This approach facilitates
automated tests, with each test involving a predefined browser
session featuring one of the extensions. During each test, the
extensions are navigated through a series of predetermined
URLs they are allowed to run on based on information from
the manifest.json configuration file.

Following this process, we undertake the verification of
the malicious behavior in all 517 extensions identified as
suspicious. This verification process is twofold: we manually
examine the code where possible, and in instances where
the report lacks details about the malicious behavior, we
dynamically execute and monitor the extension for any signs of
potentially unwanted behavior. This comprehensive approach
ensures a thorough assessment of each extension’s activities
and functions.

C. Malicious Categories Labeling

We categorize malicious extensions into six types to
understand their behaviors and persistence in Manifest V3.
These include click scams, ad replacement, user data analytics,
credentials stealing, browser modification, and other activities
like crypto theft and phishing. User data analytics is the
most common, capturing 68% of labels, indicating extensive
personal information collection. Browser modifications and ad
replacements are also significant, each at 21%, while creden-
tials stealing is less common with eight instances, reflecting its

(OLD) Manifest V2 (NEW) Manifest V3
manifest version: 2 manifest version: 3
background scripts service workers

chrome.browseraction chrome.action
CSP policies CSP policies

(any) (self, none, localhost, 127.0.0.1)
chrome.extension.* [45] chrome.runtime.*

chrome.tabs.* [45] chrome.[VARIES].*
TABLE II. CATEGORIES OF MANIFEST V3 CHANGES OUR

AUTOCONVERTER HANDLES SUCCESSFULLY.

high impact and execution complexity. The distribution across
categories is detailed in Table I, noting some extensions fall
into multiple categories.

Manual Verification: The manual verification process in-
volves spending 15 minutes per extension to examine the code,
culminating in approximately 130 hours of manual review.

D. V3 Conversion

In the process of adapting extensions from Manifest Ver-
sion 2 to Version 3, our autoconverter, which is based on
official documentation, focuses on crucial conversions as out-
lined in Table II. The conversion process updates the man-
ifest.json file, which is essential for the functionality of the
extension, as well as deprecated APIs in the source code of
the extension. The manifest.json changes include updating the
manifest version to 3 to indicate compliance with the most
recent specifications. Background scripts are replaced with ser-
vice workers to align with Manifest Version 3’s emphasis on
more efficient and secure background processes. Furthermore,
the transition from chrome.browseraction to chrome.action
aligns with the new Manifest standards, and Content Security
Policy (CSP) policies are updated to values accepted by
Manifest Version 3.

The converter also addresses the deprecation of certain
APIs by transitioning from the deprecated chrome.extension.*
to chrome.runtime.*, for the subset of APIs affected and re-
ported in the official website [45]. Nevertheless, our converter
encounters challenges with extensions that rely heavily on
background scripts for interacting with the Document Object
Model (DOM) or require complex modifications to the man-
ifest.json file, such as adapting scripts to work with service
workers, which results to our converter not providing 100%
coverage for all testcases. Furthermore, we note an open-source
project known as the extension manifest converter [19] which
takes some of these conversions into account. However, this
project is not actively maintained and supports a more limited
range of APIs compared to our autoconverter, highlighting the
more comprehensive scope and enhanced capabilities of our
tool.

Benign vs Malicious Extensions: The conversion process,
including manifest and API changes, applies equally to both
benign and malicious extensions, ensuring that both types

webstore ID # Extensions (%)
Online 2,649 (84.7%)
Offline 479 (15.3%)
Total 3,128 (100%)

TABLE III. EXTENSIONS THAT WERE ROLLED-BACK FROM V3 BACK TO
V2 AND ONLINE AVAILABILITY IN THE WEBSTORE.

4

[0-20) [20-50) [50-100) [100-200) [200-1,000)[1,000-10,000)[10,000+]

LoC Changed (#)

0

10

20

30

40

50

60

Ex
te

ns
io

ns
 in

 R
an

ge
 (

%
)

0.4%

59.8%

17.8%

12.0%

5.6%
3.3% 1.1%

Fig. 4. How many LoC needed to convert the V2 malicious extensions to a
V3 equivalent version before running the dynamic analysis on the V3 ones.

have the same likelihood of functioning after conversion. This
is due to a broad set of changes affecting all extensions
regardless of their intent. The neutrality of our conversion
process means that the outcome for each extension, whether
benign or malicious, is determined by its compatibility with
Manifest Version 3 specifications, not its original purpose.

E. Dynamic Analysis

To test if a malicious extension remains functional after
conversion, we employ playwright instrumentation to load the
extension in a Chromium browser. We then navigate to web-
sites allowed by the extension’s manifest.json configuration.
Successful website visits indicate that our conversion process
has preserved the extension’s functionality.

F. Malicious Extensions Definition

In our final methodology phase, we dynamically test
converted V2 extensions in the Manifest V3 framework to
assess their active status. We use Catapult for secure ses-
sion recording and replay, preventing direct external server
communication. By comparing sessions with and without the
extension, we identify extension-specific requests and check
them against a list of known malicious URLs, including C&C
servers and domains listed on EasyList and EasyPrivacy [43].

Functionally Active: We categorize an extension as a
functionally active malicious extension in Manifest V3 when
it meets specific criteria: it has a history of verified malicious
behavior, has been removed from the Google Webstore, falls
into one of the malicious categories after manual verification
of its behavior, successfully converts to Manifest V3 and loads
correctly, and attempts to initiate a request to any URL from
a list of known malicious domains. These criteria are vital
for assessing whether extensions, previously recognized as
malicious in their V2 form, continue to operate maliciously
under Manifest V3.

V. RESULTS

A. Manifest V3 Adoption Rate

The analysis of Manifest V3 adoption in the Chrome Web-
store highlights a steady transition from V2 to V3. Initially,
the V3 conversion rate was below 5%, with only about 30,000

Result Number of extensions (%)
Success (Initial) 154 (29.8%)

Fail (Initial) 363 (70.2%)
Success (after war modifications) 290 (56.1%)

Fail (Final) 227 (43.9%)
Executed 517 (100%)

TABLE IV. OUTCOME OF DYNAMIC EXECUTION OF MALICIOUS V3
EXTENSIONS

extension versions updated to V3. This trend saw a significant
increase, with 90% of new uploads being in V3 by late
2023/early 2024, according to the data depicted in Figure 2
and Figure 3. These figures illustrate the monthly adoption
rates, showing a consistent rise in V3 adoption from 2% in
January 2021 to 40% of new daily updates by the time the
migration plan was paused.

Furthermore, our findings on rollback rates, where exten-
sions reverted to V2 after initially updating to V3, involve
3,129 extensions. Table III details that 15.3% of these rolled-
back extensions were removed from the Webstore, indicating
challenges with V3 adoption due to its limitations or con-
cerns over malicious behavior. This comprehensive analysis
underscores a significant yet gradual shift towards Manifest
V3, marked by initial hesitancy and eventual widespread
acceptance among developers.

B. LoC Distribution after Conversion to V3

The conversion of malicious V2 extensions to Manifest
V3 showed varied changes in lines of code (LoC), which
we detail in Figure 4. Notably, conversions rarely involved
fewer than 20 changed LoC. The majority, 89.6%, saw changes
ranging from 20 to 200 LoC. Outliers, constituting 1.1% of
the dataset, experienced changes exceeding 10,000 LoC, often
in extensions with large source code bundles. This highlights
the diverse effects of transitioning to V3, influenced by the
extension’s complexity and code structure.

The significant changes in lines of code are attributed to the
size of libraries included in the extension source code and our
modification process. Initially, we substitute APIs in the code,
followed by code beautification to facilitate line count. If a
large library contains approximately 10,000 lines of code on a
single line and we perform a substitution there, then beautify it,
this results in it being counted as 10,000 lines of code changed.

C. Improved Security of Manifest V3

Manifest V3 has improved security by altering API usage,
with changes detailed in Table V, informed by prior work on
vulnerable and malicious extensions [50], [55]. These changes
target APIs previously linked to vulnerabilities or malicious
activities. Table VI shows the usage of such APIs in malicious
extensions, highlighting the impact of these modifications. For
example, the eval function, highly susceptible to misuse, and
APIs like XMLHttpRequest and fetch, are extensively used in
malicious activities, as evidenced by their high usage rates.

D. Dynamic Execution for V3 Malicious Extensions

In our analysis, we dynamically tested all 517 extensions
converted to Manifest V3, with 154 exhibiting malicious

5

API API Vulnerability Malicious code
Category Name Related Related

runtime.sendMessage ✓ ✗
Background Pages runtime.connect ✓ ✗

Related APIs runtime.onMessage.addListener ✓ ✗
runtime.onConnect.addListener ✓ ✗

Web Request webRequest ✓ ✓
API webRequestBlocking ✓ ✓

Content Scripts and XMLHttpRequest ✓ ✓
Cross-Origin Requests fetch ✓ ✓
Remotely Hosted Code eval ✗ ✓

TABLE V. APIS THAT WERE DEPRECATED, REPLACED OR OFFERED ALTERNATIVES IN MANIFEST V3 WHICH ARE ALSO RELATED TO VULNERABLE
AND MALICIOUS JAVASCRIPT CODE IN BROWSER EXTENSIONS.

API API Total API Unique Extension API exists
Category Name Hits Hits (%)

runtime.sendMessage 1,386 112 21.7
Background Pages runtime.connect 242 69 13.3

Related APIs runtime.onMessage.addListener 874 88 17.0
runtime.onConnect.addListener 50 21 4.1

Web Request webRequest 1,004 85 16.4
API webRequestBlocking 234 35 6.8

Content Scripts and XMLHttpRequest 4,340 340 65.8
Cross-Origin Requests fetch 3,972 312 60.3
Remotely Hosted Code eval 6,654 454 87.8

Total Extensions N/A N/A 517 100
TABLE VI. TOTAL HITS OF APIS RELATED TO VULNERABLE AND MALICIOUS CODE IN DYNAMICALLY TESTED MALICIOUS EXTENSIONS.

behavior post-conversion, representing 29.8% of the tested
set. Results in Table IV reveal 70.2% of extensions failed to
display malicious activity due to web accessible resources or
DOM issues. Table VII categorizes the behaviors of extensions
that ran successfully, showing user data analytics and browser
modifications as dominant categories, as initially categorized in
Table I. The comprehensive results of the extension conversion
process, post implementation of the proof of concept, are
detailed in Table II. This table reveals that 56.1% of the total
extensions retained functionality after conversion to V3 and
the application of the proof of concept.

E. Proof of Concept for Code Injection

Manifest V3 changes how third-party code is included in
extensions, requiring executable code to be part of the source
code, yet allowing for external resource interaction through
web accessible resources files declared in the manifest.json.
This setup enables extensions to integrate third-party scripts,
potentially creating a chain of JavaScript file inclusions.
Listings 1 and 2 provide a proof of concept, showing the
declaration for external interactions and how remote server
files can inject further JS scripts. This method opens avenues
for various malicious activities, including session cookie theft
and password compromises.

VI. DISCUSSION & MITIGATIONS

A. Pioneering Study & Community Response

This study is the first to analyze V3 adoption and its impact
on malicious extensions, revealing that V3 does not eliminate
any malicious category entirely. It also provides proof of
concept for converting V2 extensions to V3, preserving their
functionalities.

Manifest V3’s rollout has sparked debate, especially among
adblocker developers concerned about reduced efficacy [23],
[20]. The transition to the declarativeNetRequest (DNR) API
from webRequest has raised issues about extension capability
and innovation [12], [28], [32], [33], despite some studies
indicating potential performance benefits for privacy exten-
sions [4], [48]. Challenges with service workers’ DOM API
access and library compatibility further highlight the need for
V3 improvements.

B. Positives of V3 & Mitigation Strategies

Manifest V3 has introduced measures enhancing extension
security, notably making malicious XMLHttpRequest (XHR)
and fetch requests harder to execute by restricting XHR to
content scripts and requiring Cross-Origin Resource Sharing
(CORS) headers adjustment [15]. The review process for
extensions is also being improved [11], [21], [10], [30], raising
security standards.

To further mitigate risks, strategies include deploying 3rd-
party watchers to monitor web accessible resources files for
malicious changes, dynamically executing extensions to iden-
tify unauthorized redirects. Adjusting Content Security Policy
(CSP) rules to limit malicious extensions without affecting

Malicious label Number of functional extensions
Click scam 15

Ad replacement 77
User data analytics 123
Credentials stealing 2

Browser modification 88
Other 29

TABLE VII. MALICIOUS V3 EXTENSIONS THAT RAN SUCCESSFULLY
PER MALICIOUS CATEGORY

6

// manifest.json
[..]
"content_security_policy": {
"extension_pages": "script-src 'self'; object-
src 'self'"},

"web_accessible_resources": [
{"resources": ["src/injects_3rd_party.js"],

"matches": ["https://*/*"]}]
[..]

Listing 1. 3rd party inclusion - manifest.json

// (a) injects_3rd_party.js
(function (e) {

var site = "//malicious_site.com";
var script = e.createElement("script");
script.src = "https:" + site + "/js/

malicious_3rd_party_payload.js";
(e.head || e.body).appendChild(script)

}) (window, document);

// (b) malicious_3rd_party_payload.js
do_malicious_stuff()

Listing 2. Inclusion of 3rd party: (a) local extension file and (b) external
payload

benign ones and enhancing manual reviews coupled with
advocating for open-source code to allow community-driven
security checks are proposed, building on top of tools that ana-
lyze extensions already like CRXcavator [42] and LayerX [44].
These strategies, although challenging due to potential evasion
techniques [52], are crucial for enhancing V3 security and
ensuring a safer extension ecosystem.

VII. LIMITATIONS & FUTURE WORK

A. Evasion Techniques in Malicious Extensions

Our evaluation of malicious extensions in V3 highlighted
the impact of evasion techniques on our ability to detect mali-
cious behaviors, as detailed in Table VIII. These techniques
range from monitoring user actions to delaying malicious
payloads, showcasing the adaptability of malicious actors.
Addressing these sophisticated evasion tactics is crucial for
enhancing security measures.

B. Future work

Future efforts will broaden our analysis to additional
browsers like Firefox, Opera, Safari, and Edge, focusing on
the adaptation to Manifest V3 and service workers. Gather-
ing a comprehensive dataset of malicious extensions across
these platforms presents a significant challenge. We also aim
to assess the V3 ecosystem’s evolution post-V2 phase-out,
especially its impact on the extension landscape and security
measures.

Evasion techniques
Deactivate if IP is from a university

Deactivate if user’s search query contains the words
”C&C” or other similar phrases

Deactivate if user accesses locally hosted websites
Wait 3 days until malicious payload is downloaded

Check against a hard-coded list of privacy extensions
Check whether user is accessing the Developer Tools API

Check if user is tech-savvy (combination of above)
TABLE VIII. EVASION TECHNIQUES USED BY MALICIOUS

EXTENSIONS

VIII. RELATED WORK

The extension ecosystem, active for over a decade, has been
extensively researched by the scientific community.

A significant portion of this research focuses on identifying
and analyzing malicious extensions. Kapravelos et al. [53]
developed a method to detect such extensions using honey
pages. Weissbacher et al. [59] investigated extensions leaking
browser history, whereas Chen et al. [49] performed analysis
based on data sources and sinks in extensions. Starov et
al. [57] examined privacy diffusion in extensions, creating
a tool named PrivacyMeter for this purpose. Research by
Pantelaios et al. [55] involved identifying malicious extensions
through clustering of similar JS API changes.

In the realm of privacy preservation and vulnerable data
flows, Fass et al. [50] introduced DoubleX, a tool for detecting
vulnerable data flows generated by extensions. Zhao et al. [61]
focused specifically on privacy leaks in Chinese extensions.
Starov et al. [58] created an extension dedicated to privacy
preservation. The Empoweb tool, aimed at identifying APIs
used by vulnerable extensions, is another notable contribution
in this area [56]. Giuffrida et al. [51] developed a model for
detecting privacy breaches in cross-browser extensions, and Li
et al. [54] introduced SpyShield, a tool for preserving privacy
in add-ons.

The study by Borgolte et al. [48] highlighted the perfor-
mance benefits of privacy-focused extensions. This work was
cited by ad blocker developers criticizing the limitations of
Manifest V3 [23]. Xie et al. [60] investigated privacy leaks
in Chrome extensions using JTaint, a JavaScript analysis tool.
Zhu et al. [62] developed a lightweight, stealthy adblocking
browser. Finally, Agarwal et al. identified that more than 2,400
extensions interfere with security headers in the domain of
extension security headers [47].

IX. CONCLUSION

Manifest V3 significantly enhances Chrome extension se-
curity by deprecating or removing 87.8% of vulnerable APIs.
Despite this, 154 (29.8%) of analyzed malicious extensions
remain operational after conversion. Initially, less than 5%
of extensions adopted V3, but now 90% of new uploads are
in V3. Our analysis of 517 malicious extensions indicates
a reduction in functionality post-V3, yet 290 (56%) adapt
using web accessible resources for malicious activities. These
findings underline the ongoing need for improvements in the
extension ecosystem.

7

REFERENCES

[1] “Manifest v3,” https://developer.chrome.com/docs/extensions/mv3/
intro/, 2020.

[2] “declarativenetrequest api,” https://developer.chrome.com/docs/
extensions/reference/declarativeNetRequest/, 2021.

[3] “Service worker api,” https://developer.chrome.com/docs/workbox/
service-worker-overview/, 2021.

[4] “Adblocker performance study by ghostery,” https://whotracks.me/blog/
adblockers performance study.html, 2022.

[5] “Api deprecation in v3,” https://developer.chrome.com/docs/extensions/
mv3/intro/mv3-migration/, 2022.

[6] “arstechnica: extesions stealing user accounts,” https://arstechnica.
com/information-technology/2020/10/popular-chromium-ad-blockers-
caught-stealing-user-data-and-accessing-accounts/, 2022.

[7] “bleepingcomputer: extension abusing chrome,” https://www.
bleepingcomputer.com/news/security/malicious-extension-abuses-
chrome-sync-to-steal-users-data/, 2022.

[8] “bleepingcomputer: extesions stealing user analytics,”
https://www.bleepingcomputer.com/news/security/facebook-sues-
makers-of-malicious-chrome-extensions-for-scraping-data/, 2022.

[9] “Blocksite extension,” https://chrome.google.com/webstore/detail/
blocksite-block-websites/eiimnmioipafcokbfikbljfdeojpcgbh, 2022.

[10] “Browser v3 adoption,” https://extensionworkshop.com/documentation/
develop/manifest-v3-migration-guide/, 2022.

[11] “Browsers collaborating with developers,” https://blog.mozilla.org/
addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/, 2022.

[12] “Browser’s existing policies solutions,” https://www.eff.org/deeplinks/
2019/07/googles-plans-chrome-extensions-wont-really-help-security,
2022.

[13] “Catapult web page replay,” https://chromium.googlesource.com/
catapult/+/HEAD/web page replay go/README.md, 2022.

[14] “chrome-stats.com,” https://chrome-stats.com/, 2022.
[15] “Cors header updated in chrome v85,” https://www.chromium.org/

Home/chromium-security/extension-content-script-fetches/, 2022.
[16] “dataspii: extensions stealing user information,” https://www.salon.

com/2019/07/22/malicious-browser-extensions-are-stealing-personal-
information/, 2022.

[17] “Extension content scripts,” https://developer.chrome.com/docs/
extensions/mv3/content scripts/, 2022.

[18] “Extension malware from north korea,” https://www.cisa.gov/uscert/
ncas/alerts/aa20-301a, 2022.

[19] “Extension manifest converter,” https://github.com/GoogleChromeLabs/
extension-manifest-converter, 2022.

[20] “Extensions’ potential malfunction article,” https://www.techrepublic.
com/article/google-makes-the-perfect-case-for-why-you-shouldnt-use-
chrome/, 2022.

[21] “Firefox collaboration on extensions,” https://blog.mozilla.org/addons/
2021/05/27/manifest-v3-update/, 2022.

[22] “ghacks: extension faking authenticator,” https://www.ghacks.net/
2021/05/18/dont-download-this-microsoft-authenticator-extension-for-
chrome-it-is-fake/, 2022.

[23] “Ghostery extension report,” https://www.ghostery.com/blog/manifest-
v3-the-ghostery-perspective, 2022.

[24] “Gigamon: extensions with criminal implications,” https:
//blog.gigamon.com/2018/01/18/malicious-chrome-extensions-enable-
criminals-to-impact-half-a-million-users-and-global-businesses/, 2022.

[25] “kaspersky: extensions stealing user data,” https://www.kaspersky.com/
blog/chrome-plugins-alert/38242/, 2022.

[26] “Lastpass extension,” https://chrome.google.com/webstore/detail/
lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd, 2022.

[27] “lifehacker: great suspender extension,” https://lifehacker.com/ditch-
the-great-suspender-before-it-becomes-a-security-1845989664, 2022.

[28] “Manifest v3 can hurt innocation,” https://www.eff.org/deeplinks/2021/
12/googles-manifest-v3-still-hurts-privacy-security-innovation, 2022.

[29] “medium: extensions stealing cryptowallet data,” https:
//medium.com/mycrypto/discovering-fake-browser-extensions-that-

target-users-of-ledger-trezor-mew-metamask-and-more-e281a2b80ff9,
2022.

[30] “Microsoft v3 rollout,” https://docs.microsoft.com/en-us/microsoft-
edge/extensions-chromium/developer-guide/manifest-v3, 2022.

[31] “Playwright browser simulation,” https://playwright.dev/, 2022.

[32] “Potential threats of v3,” https://www.eff.org/deeplinks/2021/12/
chrome-users-beware-manifest-v3-deceitful-and-threatening, 2022.

[33] “Privacy extensions changes,” https://www.theregister.com/2022/06/08/
google blocking privacy manifest/, 2022.

[34] “radware: crypto stealing extensions,” https://blog.radware.com/
security/2018/05/nigelthorn-malware-abuses-chrome-extensions/,
2022.

[35] “reddit: extension faking authenticator,” https://www.reddit.com/r/
chrome/comments/hbpi7z/found a extension that contains malware/,
2022.

[36] “ublock origin extension,” https://chrome.google.com/webstore/detail/
ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm, 2022.

[37] “xda-devlopers: great suspender extension,” https://www.xda-
developers.com/google-chrome-the-great-suspender-malware/, 2022.

[38] “zdnet: extensions stealing cryptowallet private keys,”
https://www.zdnet.com/article/chrome-extension-caught-stealing-
crypto-wallet-private-keys/, 2022.

[39] “zdnet: extensions stealing sensitive user data,” https://www.zdnet.
com/article/google-removes-106-chrome-extensions-for-collecting-
sensitive-user-data/, 2022.

[40] “zdnet: facebook suing extension developers,” https://www.zdnet.com/
article/facebook-sues-two-chrome-extension-makers-for-scraping-
user-data/, 2022.

[41] “Collection of malicious extensions report,” https://github.com/
mallorybowes/chrome-mal-ids, 2024.

[42] “Crxcavator: Code analyzer,” https://crxcavator.io/, 2024.

[43] “Easylist blocklisted urls,” https://github.com/easylist/easylist, 2024.

[44] “Layerx: Code analyzer,” https://layerxsecurity.com/, 2024.

[45] “Unsupported apis,” https://developer.chrome.com/docs/extensions/
develop/migrate/api-calls#replace-unsupported-apis, 2024.

[46] S. Agarwal, “Helping or hindering? how browser extensions undermine
security,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 23–37.
[Online]. Available: https://doi.org/10.1145/3548606.3560685

[47] S. Agarwal and B. Stock, “First, do no harm: Studying the manipulation
of security headers in browser extensions,” Proceedings 2021 Workshop
on Measurements, Attacks, and Defenses for the Web, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:233288141

[48] K. Borgolte and N. Feamster, “Understanding The Performance Costs
and Benefits of Privacy-focused Browser Extensions,” in Proceedings
of the 29th The Web Conference (TheWebConf, formerly known as
WWW), T.-Y. Liu and M. van Steen, Eds. International World
Wide Web Conference Committee (IW3C2), 2020. [Online]. Available:
http://dx.doi.org/10.1145/3366423.3380292

[49] Q. Chen and A. Kapravelos, “Mystique: Uncovering information
leakage from browser extensions,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 1687–1700. [Online]. Available: https://doi.org/
10.1145/3243734.3243823

[50] A. Fass, D. F. Somé, M. Backes, and B. Stock, “Doublex: Statically
detecting vulnerable data flows in browser extensions at scale,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 1789–1804. [Online].
Available: https://doi.org/10.1145/3460120.3484745

[51] C. Giuffrida, S. Ortolani, and B. Crispo, “Memoirs of a browser: A
cross-browser detection model for privacy-breaching extensions,” in
Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security, ser. ASIACCS ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 10–11. [Online].
Available: https://doi.org/10.1145/2414456.2414461

8

https://developer.chrome.com/docs/extensions/mv3/intro/
https://developer.chrome.com/docs/extensions/mv3/intro/
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://developer.chrome.com/docs/workbox/service-worker-overview/
https://developer.chrome.com/docs/workbox/service-worker-overview/
https://whotracks.me/blog/adblockers_performance_study.html
https://whotracks.me/blog/adblockers_performance_study.html
https://developer.chrome.com/docs/extensions/mv3/intro/mv3-migration/
https://developer.chrome.com/docs/extensions/mv3/intro/mv3-migration/
https://arstechnica.com/information-technology/2020/10/popular-chromium-ad-blockers-caught-stealing-user-data-and-accessing-accounts/
https://arstechnica.com/information-technology/2020/10/popular-chromium-ad-blockers-caught-stealing-user-data-and-accessing-accounts/
https://arstechnica.com/information-technology/2020/10/popular-chromium-ad-blockers-caught-stealing-user-data-and-accessing-accounts/
https://www.bleepingcomputer.com/news/security/malicious-extension-abuses-chrome-sync-to-steal-users-data/
https://www.bleepingcomputer.com/news/security/malicious-extension-abuses-chrome-sync-to-steal-users-data/
https://www.bleepingcomputer.com/news/security/malicious-extension-abuses-chrome-sync-to-steal-users-data/
https://www.bleepingcomputer.com/news/security/facebook-sues-makers-of-malicious-chrome-extensions-for-scraping-data/
https://www.bleepingcomputer.com/news/security/facebook-sues-makers-of-malicious-chrome-extensions-for-scraping-data/
https://chrome.google.com/webstore/detail/blocksite-block-websites/eiimnmioipafcokbfikbljfdeojpcgbh
https://chrome.google.com/webstore/detail/blocksite-block-websites/eiimnmioipafcokbfikbljfdeojpcgbh
https://extensionworkshop.com/documentation/develop/manifest-v3-migration-guide/
https://extensionworkshop.com/documentation/develop/manifest-v3-migration-guide/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://www.eff.org/deeplinks/2019/07/googles-plans-chrome-extensions-wont-really-help-security
https://www.eff.org/deeplinks/2019/07/googles-plans-chrome-extensions-wont-really-help-security
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chrome-stats.com/
https://www.chromium.org/Home/chromium-security/extension-content-script-fetches/
https://www.chromium.org/Home/chromium-security/extension-content-script-fetches/
https://www.salon.com/2019/07/22/malicious-browser-extensions-are-stealing-personal-information/
https://www.salon.com/2019/07/22/malicious-browser-extensions-are-stealing-personal-information/
https://www.salon.com/2019/07/22/malicious-browser-extensions-are-stealing-personal-information/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://www.cisa.gov/uscert/ncas/alerts/aa20-301a
https://www.cisa.gov/uscert/ncas/alerts/aa20-301a
https://github.com/GoogleChromeLabs/extension-manifest-converter
https://github.com/GoogleChromeLabs/extension-manifest-converter
https://www.techrepublic.com/article/google-makes-the-perfect-case-for-why-you-shouldnt-use-chrome/
https://www.techrepublic.com/article/google-makes-the-perfect-case-for-why-you-shouldnt-use-chrome/
https://www.techrepublic.com/article/google-makes-the-perfect-case-for-why-you-shouldnt-use-chrome/
https://blog.mozilla.org/addons/2021/05/27/manifest-v3-update/
https://blog.mozilla.org/addons/2021/05/27/manifest-v3-update/
https://www.ghacks.net/2021/05/18/dont-download-this-microsoft-authenticator-extension-for-chrome-it-is-fake/
https://www.ghacks.net/2021/05/18/dont-download-this-microsoft-authenticator-extension-for-chrome-it-is-fake/
https://www.ghacks.net/2021/05/18/dont-download-this-microsoft-authenticator-extension-for-chrome-it-is-fake/
https://www.ghostery.com/blog/manifest-v3-the-ghostery-perspective
https://www.ghostery.com/blog/manifest-v3-the-ghostery-perspective
https://blog.gigamon.com/2018/01/18/malicious-chrome-extensions-enable-criminals-to-impact-half-a-million-users-and-global-businesses/
https://blog.gigamon.com/2018/01/18/malicious-chrome-extensions-enable-criminals-to-impact-half-a-million-users-and-global-businesses/
https://blog.gigamon.com/2018/01/18/malicious-chrome-extensions-enable-criminals-to-impact-half-a-million-users-and-global-businesses/
https://www.kaspersky.com/blog/chrome-plugins-alert/38242/
https://www.kaspersky.com/blog/chrome-plugins-alert/38242/
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd
https://lifehacker.com/ditch-the-great-suspender-before-it-becomes-a-security-1845989664
https://lifehacker.com/ditch-the-great-suspender-before-it-becomes-a-security-1845989664
https://www.eff.org/deeplinks/2021/12/googles-manifest-v3-still-hurts-privacy-security-innovation
https://www.eff.org/deeplinks/2021/12/googles-manifest-v3-still-hurts-privacy-security-innovation
https://medium.com/mycrypto/discovering-fake-browser-extensions-that-target-users-of-ledger-trezor-mew-metamask-and-more-e281a2b80ff9
https://medium.com/mycrypto/discovering-fake-browser-extensions-that-target-users-of-ledger-trezor-mew-metamask-and-more-e281a2b80ff9
https://medium.com/mycrypto/discovering-fake-browser-extensions-that-target-users-of-ledger-trezor-mew-metamask-and-more-e281a2b80ff9
https://docs.microsoft.com/en-us/microsoft-edge/extensions-chromium/developer-guide/manifest-v3
https://docs.microsoft.com/en-us/microsoft-edge/extensions-chromium/developer-guide/manifest-v3
https://playwright.dev/
https://www.eff.org/deeplinks/2021/12/chrome-users-beware-manifest-v3-deceitful-and-threatening
https://www.eff.org/deeplinks/2021/12/chrome-users-beware-manifest-v3-deceitful-and-threatening
https://www.theregister.com/2022/06/08/google_blocking_privacy_manifest/
https://www.theregister.com/2022/06/08/google_blocking_privacy_manifest/
https://blog.radware.com/security/2018/05/nigelthorn-malware-abuses-chrome-extensions/
https://blog.radware.com/security/2018/05/nigelthorn-malware-abuses-chrome-extensions/
https://www.reddit.com/r/chrome/comments/hbpi7z/found_a_extension_that_contains_malware/
https://www.reddit.com/r/chrome/comments/hbpi7z/found_a_extension_that_contains_malware/
https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm
https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm
https://www.xda-developers.com/google-chrome-the-great-suspender-malware/
https://www.xda-developers.com/google-chrome-the-great-suspender-malware/
https://www.zdnet.com/article/chrome-extension-caught-stealing-crypto-wallet-private-keys/
https://www.zdnet.com/article/chrome-extension-caught-stealing-crypto-wallet-private-keys/
https://www.zdnet.com/article/google-removes-106-chrome-extensions-for-collecting-sensitive-user-data/
https://www.zdnet.com/article/google-removes-106-chrome-extensions-for-collecting-sensitive-user-data/
https://www.zdnet.com/article/google-removes-106-chrome-extensions-for-collecting-sensitive-user-data/
https://www.zdnet.com/article/facebook-sues-two-chrome-extension-makers-for-scraping-user-data/
https://www.zdnet.com/article/facebook-sues-two-chrome-extension-makers-for-scraping-user-data/
https://www.zdnet.com/article/facebook-sues-two-chrome-extension-makers-for-scraping-user-data/
https://github.com/mallorybowes/chrome-mal-ids
https://github.com/mallorybowes/chrome-mal-ids
https://crxcavator.io/
https://github.com/easylist/easylist
https://layerxsecurity.com/
https://developer.chrome.com/docs/extensions/develop/migrate/api-calls#replace-unsupported-apis
https://developer.chrome.com/docs/extensions/develop/migrate/api-calls#replace-unsupported-apis
https://doi.org/10.1145/3548606.3560685
https://api.semanticscholar.org/CorpusID:233288141
http://dx.doi.org/10.1145/3366423.3380292
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1145/3460120.3484745
https://doi.org/10.1145/2414456.2414461

[52] J. Jueckstock, P. Snyder, S. Sarker, A. Kapravelos, and B. Livshits,
“Measuring the Privacy vs. Compatibility Trade-off in Preventing
Third-Party Stateful Tracking,” in Proceedings of The Web Conference
(WWW), Apr. 2022.

[53] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson, “Hulk: Eliciting malicious behavior in browser extensions,”
in 23rd USENIX Security Symposium (USENIX Security 14), 2014.

[54] Z. Li, X. Wang, and J. Y. Choi, “Spyshield: Preserving privacy from
spy add-ons,” in Recent Advances in Intrusion Detection, C. Kruegel,
R. Lippmann, and A. Clark, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 296–316.

[55] N. Pantelaios, N. Nikiforakis, and A. Kapravelos, You’ve Changed:
Detecting Malicious Browser Extensions through Their Update Deltas.
New York, NY, USA: Association for Computing Machinery, 2020, p.
477–491. [Online]. Available: https://doi.org/10.1145/3372297.3423343

[56] D. F. Somé, “Empoweb: Empowering web applications with browser
extensions,” in 2019 IEEE Symposium on Security and Privacy (SP),
2019, pp. 227–245.

[57] O. Starov and N. Nikiforakis, “Extended tracking powers: Measuring
the privacy diffusion enabled by browser extensions,” in Proceedings
of the 26th International Conference on World Wide Web, ser. WWW
’17. Republic and Canton of Geneva, CHE: International World Wide
Web Conferences Steering Committee, 2017, p. 1481–1490. [Online].
Available: https://doi.org/10.1145/3038912.3052596

[58] ——, “Privacymeter: Designing and developing a privacy-preserving
browser extension,” in Engineering Secure Software and Systems,
M. Payer, A. Rashid, and J. M. Such, Eds. Cham: Springer International
Publishing, 2018, pp. 77–95.

[59] M. Weissbacher, E. Mariconti, G. Suarez-Tangil, G. Stringhini,
W. Robertson, and E. Kirda, “Ex-ray: Detection of history-leaking
browser extensions,” in Proceedings of the 33rd Annual Computer
Security Applications Conference, ser. ACSAC ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 590–602.
[Online]. Available: https://doi.org/10.1145/3134600.3134632

[60] M. Xie, J. Fu, J. He, C. Luo, and G. Peng, “Jtaint: Finding privacy-
leakage in chrome extensions,” in Information Security and Privacy,
J. K. Liu and H. Cui, Eds. Cham: Springer International Publishing,
2020, pp. 563–583.

[61] Y. Zhao, L. Yang, Z. Li, L. He, and Y. Zhang, “Privacy model: Detect
privacy leakage for chinese browser extensions,” IEEE Access, vol. 9,
pp. 44 502–44 513, 2021.

[62] S. Zhu, U. Iqbal, Z. Wang, Z. Qian, Z. Shafiq, and W. Chen,
“Shadowblock: A lightweight and stealthy adblocking browser,” in The
World Wide Web Conference, ser. WWW ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 2483–2493. [Online].
Available: https://doi.org/10.1145/3308558.3313558

9

https://doi.org/10.1145/3372297.3423343
https://doi.org/10.1145/3038912.3052596
https://doi.org/10.1145/3134600.3134632
https://doi.org/10.1145/3308558.3313558

	Introduction
	Background
	Manifest V3 Community Collaboration
	Categorizing Manifest V3 Changes
	Extensions Structure
	Tools

	Malicious Extension Dataset
	Extension Sources from Past Reports
	Our Historical Dataset

	Methodology
	Architecture
	Gathering & Verifying the Malicious Datasets
	Malicious Categories Labeling
	V3 Conversion
	Dynamic Analysis
	Malicious Extensions Definition

	Results
	Manifest V3 Adoption Rate
	LoC Distribution after Conversion to V3
	Improved Security of Manifest V3
	Dynamic Execution for V3 Malicious Extensions
	Proof of Concept for Code Injection

	Discussion & Mitigations
	Pioneering Study & Community Response
	Positives of V3 & Mitigation Strategies

	Limitations & Future Work
	Evasion Techniques in Malicious Extensions
	Future work

	Related Work
	Conclusion
	References

