
Building Robust Phishing Detection System:
an Empirical Analysis

Jehyun Lee∗, Pingxiao Ye†, Ruofan Liu∗, Dinil Mon Divakaran†, Mun Choon Chan∗
∗National University of Singapore

{leejh, chanmc}@comp.nus.edu.sg, liu.ruofan16@u.nus.edu
†Trustwave

{Pingxiao.Ye, Dinil.Divakaran}@trustwave.com

Abstract—To tackle phishing attacks, recent research works
have resorted to the application of machine learning (ML) algo-
rithms, yielding promising results. Often, a binary classification
model is trained on labeled datasets of benign and phishing URLs
(and contents) obtained via crawling. While phishing classifiers
have high accuracy (precision and recall), they, however, are also
prone to adversarial attacks wherein an adversary tries to evade
the ML-based classifier by mimicking (feature values of) benign
web pages. Based on this observation, in our work, we propose
a simple approach to build a robust phishing page detection
system. Our detection system, based on voting, employs multiple
models, such that each model is trained by inserting (controlled)
noises in a subset of randomly selected features from the full
feature set. We conduct comprehensive experiments using real
datasets, and based on a number of evasive strategies, evaluate
the robustness of, both, the traditional native ML model and
our proposed detection system. The results demonstrate that our
proposed system, on one hand, performs close to the native model
when there is no adversarial attack, and on the other hand, is
more robust against evasion attacks than the native model.

I. INTRODUCTION

Phishing has been around since the early times of world
wide web and is a common technique used to deceive and
drive victims to subsequent attacks, such as leakage of sen-
sitive information and malware infection. Despite persistent
efforts, users are increasingly affected by different forms of
phishing attacks (a recent report shows a significant increase
in phishing [1]), with the medium of deception expanding
from traditional e-mail systems to SMS, chat applications and
social networks. These systems are used to deliver hypertext
links (URLs) of HTML pages to victims, with the hope of
persuading them to access the link.

While security vendors and researchers have been develop-
ing different kinds of solutions over the past many years [32],
the increased level of sophistication employed by attackers
has made detection of phishing pages a challenging problem.
Recently, researchers have proposed machine-learning (ML)
based approaches for efficient and accurate detection of phish-
ing pages [17], [44], [26], [53]. Generally, such works extract

information (features) pertaining to the phishing pages as well
as legitimate (benign) pages and build a binary classifier by
training on large labeled datasets of phishing and benign URLs
and pages.

However, ML-based phishing detection solutions are also
prone to adversarial attacks. With the knowledge of the clas-
sifier, an attacker can craft web pages with feature values
mimicking that of the benign web pages, and also actively
test against the trained classifiers. In fact, an attacker can use
publicly available services to know the result of their evasion
techniques [49], [29], [16], and subsequently release the phish-
ing pages in the wild. Recent works have demonstrated the
effect of evasion attacks against ML-based phishing detectors
in which selected features are modified [27], [45]. In particular,
copying the values for specific features from benign pages
is apparently sufficient to degrade the ML-based classifier’s
performance significantly.

In this context, it is important to come up with a robust
classifier, whose performance1 does not degrade under evasion
attacks. Broadly, there are two approaches to build a robust
classification model. One is to come up with more features
which are potentially harder for an adversary to manipulate
(e.g., see [48]). Another possibility is to reduce the impact of
a few important features on the accuracy of the classifier [25]
which are exploited by an adversary. In this work, we focus
on the latter approach.

We propose a simple but effective training methodology
to build a robust phishing detection system. The basic idea
of our approach is to deal with the skewed feature-importance
problem in classifiers (particularly in tree-based classifiers such
as Random forest) by adding controlled noises to the training
dataset. We achieve this by training multiple models, such that
each model selects a subset of all features used for training,
and inserts noises to these selected features in a controlled
manner. We propose and study two meta-classification systems
to make a decision based on the multiple classifiers — one
system randomly picks and employs one of the generated
models, whereas the other uses voting to decide the outcome of
classification. Our proposed system (based on voting) achieves
enhanced robustness against the evasion attempts that mimic
the features of the benign examples, while still maintaining
higher performance (in terms of precision and recall) in the

1As phishing detection classification has an imbalanced class problem, the
important metrics for performance analysis are precision and recall.

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2020
23 February 2020, San Diego, CA, USA
ISBN 1-891562-63-0
https://dx.doi.org/10.14722/madweb.2020.23007
www.ndss-symposium.org

scenario where there is no evasion.

We summarise our contributions in the following:

• Based on openly available datasets collected over
three months for the benign URLs and one and half
months for the phishing URLs, we build traditional
ML classification models based on various features
that are effective in detecting phishing pages with
high precision and recall. Subsequently, and more
importantly, we conduct systematic studies demon-
strating the degradation of performance due to evasion
attacks. Specifically, our results show that the area
under precision-recall curve (AUPRC) decreases from
0.991 to 0.694 under adversarial attacks.

• We exploit a simple statistical technique and propose
phishing detection systems that are robust against
evasion attacks.

• Through extensive experiments, we study the robust-
ness, generality and efficacy of our proposal system.

The rest of the paper is organized as follows. In the next
section, after providing the background on phishing detection
classifiers, we demonstrate the evasion attack and put forth
the threat model that we consider in this work. As a coun-
termeasure to the threat, we propose new detection systems
that enhance the robustness of existing models, in Section III.
Subsequently, in Section IV, we evaluate the performance of
the proposed systems under multiple evasion strategies. We
discuss further on evasion strategy as well as on potential
future direction in Section V. We conclude after briefing on
related works in Section VI.

II. MOTIVATION

Machine learning (including deep learning) has been in-
creasingly employed for security purposes, such as anomaly
detection [34], [35], malicious domain detection [8], etc. In
this section, we provide the background on phishing classifiers,
including the different features used for building ML-based
classifiers. Subsequently, we illustrate and thereby motivate the
possibility of evading phishing classifiers built on such widely
used features. Finally, we present the threat model considered
in this work.

A. Background

Previous studies using machine learning techniques have
mainly focused on defining new features that represent the
behavior, semantic, page structure, reputation and many other
characteristics of a target web site. The existing classifiers and
their features have shown their efficacy in classifying phishing
pages by modeling the malicious and abnormal contents of
phishing pages using quantitative metrics (e.g., [43], [44],
[53]).

We categorize the phishing classifiers based on the source
of the features used for building the models: i) Input sources
are URLs, which can be extracted before the target website
is actually accessed. ii) Input sources are both URLs as well
as HTML contents, the latter requiring more time and space
to collect during operation. URL strings and HTML contents
are usually accessible for a deployed phishing page detection

solution, in either host-based or network-based systems. Many
network-based detection systems provide phishing detection
services for HTTPS sessions through a secure channel, such
as a web-proxy and VPN tunneling [18].

Classifiers with URL-based Features: Detecting phishing
pages based only on URL-based features is appealing for
multiple reasons. One, URLs can be obtained from network
traffic or web-proxies before the actual (malicious) page is
loaded. Two, processing URLs and classifying pages using
URLs can be achieved in real-time and faster than models that
require HTML pages. Rakesh et al. [39] explored statistical
features on URL strings such as length of URL, suspicious
symbol counts, character frequency distribution, number of
target brands, similarity to English dictionary, etc. This is
based on the assumption that phishing sites generally target
well-known sites, thus they will attempt to deceive users by
embedding targets into a URL path. Furthermore, the study
assumes the lexical structure of legitimate URLs and phishing
URLs are inherently different. Authors in [43] proposed a
methodology to quantify the intra-relatedness of tokens on a
URL string. They argue that the tokens in a legitimate URL
are related to each other, meanwhile, those in the phishing
URLs are not. The proposal measures the quantified degree of
relationship between the tokens by comparing the results from
search engines.

Classifiers with HTML content-based Features: With the
increased sophistication of URLs for phishing pages, the detec-
tion based only on URLs has faced some limitations [30]. In-
specting HTML contents is considered an expensive but worthy
approach to figure out the malicious behavior which manifests
more in the page contents than in the URL. Cantina+ [17]
incorporates URL features, HTML features and web-based
features, for building a phishing detection classifier. Traditional
features in URL, e.g., sensitive words, number of dots, @
symbol, etc. are reused and two new features in URLs — IP
address and out-of-position TLD — are also proposed. As for
HTML, the work mainly considers on characterising the login
form and hyperlinks. External features include WHOIS records
and search engine results. Later works such as [22] and [53]
further expanded the feature set, based on the insight that
phishing sites include hyperlinks that are pointing outside of
the domain, hence it is useful to compute the internal/external
link ratio and internal/external resource ratio. In another work,
Samuel et al. [44] gave attention to the relationship between
the URLs and HTML pages during the browsing process for
each single URL access. For example, an interesting intuition
they put forth was that the frequently appearing word tokens
should be consistent in the starting, landing and intermediate
redirection URLs, and also in HTML contents, for benign URL
access.

We trained different classifiers based on fifty-one phishing
detection features from multiple previous works [17], [44],
[46], [51], [28]; the feature categories and examples are listed
in Tables I. For avoiding ambiguity, from now on, we use a
phishing page which has a URL and an HTML page as an
entity of classification. Fig. 1 plots the precision-recall curves
(PRC) achieved by the classifiers on test data. Precision is the
fraction of correctly predicted pages of all those predicted as
phishing; whereas, recall is the fraction of correctly predicted
pages of all those that were actually phishing URLs. A

2

TABLE I: Feature set used for building a test phishing page
detection model. The full list of features is given in Appendix.

Source # of features Examples

URL string 13
Length of URL, Number of tokens in URL,
Length of domain name, Number of dots
in URL, Suspicious tokens in URL, etc.

HTML content 38
Number of images, Depth of DOM structure,
Ratio of internal resources, Length of HTML
text, Number of unique file types, etc.

Total 51

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n

Recall

Naive-bayes
KNN

Random forest
SVM

Fig. 1: Detection performance comparison of machine learning
algorithms for phishing page detection

classifier with recall 1.0 detects all phishing pages, but that is
valuable only if the precision is high, otherwise, the number of
false positives that an analyst would have to go through will be
quite high. Therefore, from an operational perspective, having
high precision is very important. From Fig. 1, we observe that
Random forest classifier performs the best; henceforth, our
discussions and evaluations will be based on Random forest
classifier.

B. Evasion by mimicking benign values of targeted features

Many works on phishing classifiers are prone to adversarial
attacks. On learning the feature set used for building the
classification model deployed, an adversary can, with little
effort, develop a phishing web page that easily evades the
classifier. That is, an adversary can mislead the system to
classify a malicious sample as a benign sample. In particular,
an adversary can achieve this misclassification by exploiting
the knowledge of the classification model. In a couple of
taxonomies, this kind of attacks are categorized as exploratory
attacks [4], [27]. Liang et al. [27] confirms that even a widely-
used commercial phishing detection system can be bypassed by
the exploratory attack. Once an adversary knows the features
of the phishing classifier that are useful in differentiating the
two classes (benign and phishing), the adversary can craft the
phishing page in a way that, such features have appropriate
values to evade the classifier.

To confirm the threat due to evasion attacks on a phishing
classifier, we carried out a set of experiments on Random
forest based phishing page classifier. Here we set a simple
evasion attack assuming knowledge of the model — for the top
important features of the classifier, the phishing pages copied
the values corresponding to the benign web pages (which is
also the goal of the attacker in any case, as a phishing page is
supposed to appear very similar to the target benign web page).
Fig. 2 plots the PRC of the traditional or native classifier when

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n

Recall

Native model w/o evasion
Evasion on top 10 features
Evasion on top 20 features

Evasion on random 20 features

Fig. 2: Phishing page detection performance under evasion
attack that mimics values from benign datasets for different
selected features in 50% of the phishing pages

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n

Recall

Native model w/o evasion
Evasion on 25% of phishing pages
Evasion on 50% of phishing pages
Evasion on 75% of phishing pages

Evasion on 100% of phishing pages

Fig. 3: Effect of evasion when only a certain percentage of
phishing pages are modified for evasion purposes. Top 20
features were used for evasion attack.

there is no evasion attack, and when there is an evasion attack
mimicking top 10 and top 20 features for half of phishing
pages in the test set2. As a consequence of the attack, 99.1%
of AUPRC (area under PR curve) achieved under the naive
condition falls to 94.0% and 89.1%, when top 10 and top
20 features, respectively, are evaded. AUPRC gaps between
the different PRCs in the figure clearly confirm the efficacy
of the evasion attacks and the degradation of the classifier.
Fig. 3 plots evasion on top 20 features of the native model,
when 25%, 50%, 75%, and 100% of phishing samples are
modified for evasion. When the percentage of evading phishing
pages increases to 75% and 100%, AUPRC drops further to,
81.9% and 69.4%, respectively. We can observe in Figure 2
that, selecting random features for evasion does not affect the
performance significantly, and knowing the top discriminative
features that help in classification is important for an adversary
to craft effective evasive pages.

C. Threat model

We consider the ML-based phishing detection system as the
primary victim of attacks. An adversary is the one behind a
phishing attack; equally importantly, an adversary in our work
attempts to evade the phishing detection systems so that the

2Details of the dataset and features for this scenario are given in Section IV.

3

phishing web page that has been set up is accessible to the
end-user (also a victim).

Adversary capability: We assume that an adversary in our
scenario has a general understanding of machine learning
algorithms to evade the ML-based phishing detection system.
An adversary may have control over the domain name and the
content of a web server which serves malicious contents. To
achieve this goal, adversaries need to have the ability to craft
and register new domain names. An adversary may also have
the capability to learn the important features used by a target
detection system. There are two ways to achieve this: (i) white-
box attack: the adversary could build a classifier using openly
available datasets, such as Alexa top websites [2], PhishTank
database [38], etc.; this is also the commonly used approach
by defenders. Based on the classifier model built, the adversary
can learn the important features of use. For example, training
Random forest classifier, one can obtain an importance score
of features used (which is also dependent on the correlation
of features). There are also other ways of estimating feature
ranks (or importance); see [13] for example. (ii) black-box
attack: through repeated tests, an adversary could potentially
guess the features used in the ML-model, as the adversary can
also observe the result of his attack (if the phishing web page
is accessed or not) [7], [27], [40].

Scope and assumptions: We do not limit the features that can
be exploited by an adversary, as long as the features are from
URLs and HTML contents, both of which are under the control
of the attacker. However, a phishing site cannot be exactly the
same as a benign site for a practical reason; for example, a
phishing site targeting a bank website, would need at least the
URL to be different. We do not specify the method to drive
a victim to the phishing web server; e.g., it could using spam
email, social engineering, SMS, etc.

The causative attacks [5] that affect the training dataset
or training process are not considered in our threat model.
The causative attacks to a security application although aims
to lower the system performance, its execution is a critical
security breach of a confidential system; and this cannot
be solved via robust modeling. Poisoning attacks including
training data manipulation and injection as well as direct logic
corruption are not considered here. Neither is the availability
attack within our scope of work. The evasion attack is carried
out only at the inference stage.

Lastly, we do not consider the techniques that require
analysis of the web pages as rendered by the browsers as well
as those that analyse the dynamic behavior of the pages, for
example using visual comparisons [14], [31] and sandboxing
approaches [19].

III. ROBUST PHISHING PAGE DETECTION WITH FEATURE
RANKING CONTROL

In this section, we propose a methodology to build a
phishing detection system that enhances the robustness of an
existing phishing page classifier against evasion attacks. One
straight-forward way to achieve this would be to train different
classifiers with different sets of features (i.e., each classi-
fier has some features removed); and then use an integrated
model based on these classifiers, so as to hinder an adversary
from learning the features used for classification. However,

training
dataset

validation
dataset

native
features

feature
extractor

selected
features

robust phishing
detection system

feature list for
noise insertion

noise
generator

model
builder

: Native component/process of modeling with machine learning
: Extended component/process for robust modeling

: Data flow

noised
features

Fig. 4: Process diagram of robust n-version phishing page
modeling

the removal of features from a classifier is potentially risky
because the removed features are no more considered (in that
respective model) for the purpose of classification. Instead, we
propose a different methodology, wherein multiple instances
of classifiers are generated, but without changing the feature
set and model-building algorithms. The multiple classifiers are
created from the same feature set, by manipulating the actual
values of randomly selected features. The detection system can
then operate these different instances of the classifiers, which
together are (possibly) more robust against the evasion attacks
than one single classifier.

Figure 4 illustrates the modeling process for building
a robust detection system using multiple classifiers. In the
following, we describe the important steps involved in the
process; i.e., (i) changing the feature ranking of a model using
noise insertion, ii) creating multiple models having diverse
feature rankings, and lastly, iii) building a robust phishing page
detection system with the multiple models.

A. Noise insertion on feature values

The first step towards building a robust phishing detection
model is to change the ranking of features. There are a few
well-known techniques to achieve this [25]; one of them is to
inject or insert noise to the values of a selected feature [12],
[15]. Intuitively, adding noise decreases the feature weight
within a classifier (such as a tree-based classifier), and conse-
quently, other features (whose values have not been modified)
gain importance in this new noised training dataset.

The noise generator, depicted in Figure 4, modifies the
values (or data points) of a selected feature in the training
dataset to arbitrary values. The algorithm for noise generation
is guided by two principles: (i) the range of the original values
must be retained because it is part of the feature characteristic;
and (ii) change of value should not be very arbitrary, lest
the correlation with another feature may be broken. Thus, we
propose to shift a selected data point to random distance, but
within a fixed range of the original value.

Algorithm 1 gives the pseudo-code for noise generation. V
is the list of all data values for a particular feature f obtained

4

Fig. 5: Change on feature importance and ranking by noise
insertion; top twenty features of the models before and after
noise insertion.

from the training dataset (for simplicity, we do not use a
subscript to indicate feature), and W is the output list with
the noised values for the same feature f . Obviously, V and
W are of the same length N . Noises are generated differently
for different data types — binary, continuous real numbers, and
discrete numbers. For binary values, they are flipped based on
the Bernoulli distribution with probability p (the noise-level
factor). For continuous and discrete data values, the original
data value is increased or decreased using a random value
generated from a Gaussian distribution such that the new value
is within the range of the values of that particular feature. The
Gaussian distribution has zero mean; the standard deviation
(second parameter) is estimated based on the data points.

To illustrate the concept of Algorithm 1, we inserted noises
to the top ten features of the native model and trained a noised
model. This noised model is also used in the rest of the paper
for comparison purposes. Figure 5 shows how the feature ranks
of the native model are changed due to noise insertion. The
figure lists the top twenty important features of the native (left
side of figure) and the noised (right side of figure) models. The
feature domain_occurrence which is the most important
feature in the native model is moved out of the top twenty
in the noised model; and instead, internal_link_ratio
feature (which has fourteenth rank in the native model) takes
the top rank. Therefore, the evasion attack which targets the top
twenty features of the native model is only able to hit less than
half of them in the top twenty of the noised model. The evasion
attack faces two different conditions. First, the sum of the
feature importance of the attacked features is now much lower.
However, (unavoidably) some other lesser important features
have more importance with higher ranks. Second, the features
which are not used for evasion have more feature importance
in the noised model than the native model. The eleven features
which are not targeted in the native attack have higher ranks in
the noised model. We will show how these differences affect
the performance against the evasion attack in Section IV.

B. Building multiple models having diverse feature rankings

Towards building a robust detection system that is not
adversely affected by evasion attacks, we build on our insight

Algorithm 1 Noise insertion to values of a target feature
Input: V = {vi}Ni=1; p: noise-level factor
Output: W = {wi}Ni=1

1: function INSERTNOISE(V, p)
2: rmax ← max(V) . upper bound of the values
3: rmin ← min(V) . lower bound of the values
4: if ISBINARY(V) then
5: for i← 1 to N do
6: d← BERNOULLI(p) . Bernoulli distribution
7: if d = 1 then
8: wi ← vi ⊕ 1 . flip when d = 1
9: end if

10: end for
11: return W
12: end if

. below steps, for both continuous and discrete numbers
13: g ← (rmax − rmin)× p
14: for vi ∈ V do
15: d← GAUSSIAN(0, g)
16: if ISINTEGER(V) then . for discrete numbers
17: d← ROUND(d)
18: end if
19: wi ← min(rmax,max(rmin, vi − d))
20: end for
21: return W
22: end function

of randomizing the ranking of features. While the previous
section described how we add noise to feature values, in this
section, we decide on how to choose the features to be noised.
Observe that, while inserting noise to feature values makes the
model robust, that would also affect the classification accuracy
(in terms of precision and recall). Therefore, robust model
building has to consider the trade-off between accuracy under
normal scenario and accuracy under evasion attack.

Considering the above, we next present Algorithm 2, that,
in essence, selects a random number of features from each
subset (or bucket) of features and inserts random noise into the
corresponding values, to subsequently create multiple models
with diverse feature ranking. The buckets form a partition of
the entire feature set. If m denotes the number of features used
to build a phishing detection model, let k, k ≤ m, denote the
number of features we want to select to define each bucket;
therefore the size of each bucket is m/k (assuming m is a
multiple of k). Therefore, if F = {f1, f2, . . . , fm} denotes the
feature set used, the buckets bi’s are such that,

∪(m/k)
i=1 bi = F and ∩(m/k)

i=1 bi = ∅.

Algorithm 2 takes as input the training dataset Dtrain, the num-
ber of features m, the constant size k of all buckets, the number
of features li to be noised in each bucket bi, 1 ≤ i ≤ m/k,
and the noise-level factor pf for each feature f . The output
is a model M that has l1 + l2 + . . . lm/k features noised.
Note that, each execution of Algorithm 2 gives a (possibly)
different model with not only different number of features
selected for noise insertion, but also trained on different feature
values for those noised features. Thus we generate n models,
M1, . . . ,Mn by running Algorithm 2 n times.

5

Algorithm 2 Model creation with random feature ranking

Input: Dtrain;m; k; {li}(m/k)
i=1 ; {pi}mi=1

Output: M

1: for each bucket bj , j = [1, . . . ,m/k] do
2: Fnoise ← Fnoise∪ {Select lj features randomly from bj}
3: end for
4: for i← 1 to m do
5: if i ∈ Fnoise then
6: Dnoise

i ← INSERTNOISE(Dtrain
i , pi)

7: else
8: Dnoise

i ← Dtrain
i

9: end if
10: end for
11: M = TRAINMODEL(Dnoise)

C. Robust phishing detection with multiple models

Once we generate multiple models with different feature
ranking, we consider two approaches to combine them to build
a robust phishing detection system. (i) We build n randomly
generated models based on Algorithm 2, and then during
operation (or testing) do the following: for each input (URL)
provided for classification, pick one of n models randomly for
classifying the given input, and take the output of that model as
the classification result. While being simple, this approach does
not allow the adversary to guess which model is being used
for classification, thus weakening the evasion attack. (ii) In a
second approach, we use a voting system that decides based
on the output of each of the models; that majority prediction is
the predicted class (phishing or benign) by the voting system.
We refer to the first system as R and the second system as V .

We note that building and operating multiple classifiers to
have randomness against the exploratory attack is a known
approach in machine learning; similar approaches are also
used, say in large enterprises, wherein multiple detection
solutions from different vendors are deployed for improved
accuracy. However, to be effective, such approaches often
require a large number of useful features as well as different
datasets for training multiple classifiers. The novelty of our
methodology is that it generates multiple randomized models
based on a single feature vector and a given fixed training set,
and these generated models are used to build a robust multi-
classifier detection system.

IV. EVALUATION

In this section, we evaluate the effectiveness of training
with noises in enhancing robustness of the phishing URL
classifiers against evasion attacks. We set multiple attack
scenarios varying the evasion strategies based on the effort and
knowledge of the adversary. To this end, we use AUPRC (area
under precision-recall curves) as the metric for evaluation.

A. Experimental setup

Dataset:

We collected the list of benign and phishing URLs from
public repositories. We obtained Alexa top websites [2] ranked

in February 2019 and collected 110,090 HTML pages sam-
pling from the top 300,000 domains by crawling from May 10
to August 5, 2019. The phishing URL list is collected from
the daily feed of PhishTank database [38] between May 30
and July 10, 2019. For the PhishTank daily feed, we crawled
the accessible phishing pages on the same day, resulting in a
total of 32,159 phishing pages3. The full list of features used
in this paper are given in Appendix.

We use 90% of dataset as a training set and the rest as a
test set. Our dataset is imbalanced, with the ratio of benign
to phishing being 1:3.4; we maintain the same ratio for our
test sets. In practice, the phishing classification is a highly
imbalanced class problem — we understand from security
practitioners that 1:1000 is a possible ratio (a recent work
estimates around 3:1000 [47]). We also highlight that, for
imbalanced class problems, precision and recall (along with
AUPRC) are better metrics than ROC curves. Indeed, it is
well-known that ROC curves are possibly misleading metrics
for imbalanced class problems [11]; while we have confirmed
it for phishing detection as well, we omit the results illustrating
the same.

Classification models:

(i) native model: The traditional ML model, referred to as the
native model, is a phishing page detection classifier trained
using Random forest with fifty-one URL and HTML features
as mentioned in Section II-A.

(ii) noised model: We first evaluate the noised model which is
defined in Section III-A; Fnoise is the list of top ten important
features of the native model. The noised model is identical to
the model created by Algorithm 2 with k = 10, {li}5i=1 =
[10, 0, 0, 0, 0]; i.e., noises are inserted only to the top ten
features of the native model.

(iii) randomly generated models: We create 11 models by
running Algorithm 1 as many times. Based on the intuition
that inserting noise to more features in a bucket changes the
ranks of the corresponding features, while drop in the feature
importance of high-ranked features will degrade detection
accuracy, we set diverse values to li’s for creation of each
model. (The last of the 51 features has always had close to zero
importance; hence we ignore it.) Experimenting with different
values of li’s, we found that inserting noise into the last two
buckets do not make meaningful changes. We keep l3 = 5,
and then choose values for the first two buckets such that the
minimum value of l1 is 5, and the values of l2 are between
0 to 10 so as to have the sum of l1 and l2 between 15 and
19. Thus the 11 combinations for li’s we consider are: five
sets [5, 5, 5, 0, 0], [6, 4, 5, 0, 0]...[9, 1, 5, 0, 0], another five sets
[5, 9, 5, 0, 0], [6, 8, 5, 0, 0]...[9, 5, 5, 0, 0], and the noised model
[10, 0, 0, 0, 0].

Evasion method and strategies:

An adversary can afford to learn the feature set from
existing studies, literature, by training a ML model, or, in the
worst case by reverse-engineering the detection system [27].
To build an ML model, an adversary can use the publicly
available datasets (Alexa [2] for benign, and PhishTank [38] or

3The datasets used in this paper for model building are available in the
public repository https://github.com/JehLeeKR/phishing-madweb/.

6

https://github.com/JehLeeKR/phishing-madweb/

OpenPhish [36] for phishing URLs, for example) for training
and subsequently learning the important features.

The evasion attacks we consider for experimentation here
are basically achieved by copying the feature values from the
benign dataset. In the case of phishing, this is also what an
attack would want to achieve — to mimic a (target) benign
page as much as possible. And benign pages are (obviously)
available in public. In our experiments, the target benign pages
that are mimicked are picked randomly, and the attack is
constructed at the feature level — that is, features of a phishing
URL is mimicked using the corresponding values from a
benign feature vector. For maintaining the correlation between
the feature values, all mimicked feature values of a phishing
page come from the same benign page. However, note that,
copying values of all benign features goes against the attack
itself; for example, the phishing URL will not be the same as
the targeted benign URL.

We define below, the different evasion strategies we assume
an adversary can use against the ML-based phishing detection
systems.

• [S1] Random feature attack: If an adversary cannot
make an informed guess on the important features
of the phishing classifier, the simplest strategy is
to evade using an arbitrary set of features. In this
random feature attack, we allow random selection of
20 features from the full list of 51 features.

• [S2] Evasion assuming knowledge of model-
generation algorithm: We assume adversary has
knowledge of Algorithm 2 we defined for model
generation. However, the adversary has no knowledge
of the detection system in operation; in particular, how
many models are used in operation and what kind of
detection approach is used (randomly picked model
or voting) is unknown to the adversary. Therefore, the
adversary generates one model using Algorithm 2, and
uses the top 20 features of this model for generating
evasive samples. For a detection system that uses the
same model among one of the randomly generated
models (which is the case we consider), the attacker
is guaranteed to ‘hit’ the right model at least once.

• [S3] Evasion assuming knowledge of the algorithm
and partial knowledge of operation: We assume
a stronger adversary who, not only has knowledge
of Algorithm 2, but also has partial knowledge of
detection system during operation. The attacker here
knows the number of randomly generated models used
for building the detection system; but yet does not
know the defense strategy (random model or voting).
The adversary, therefore, trains 11 models (as is used
in our detection system in the experiments below),
and subsequently finds out the 20 most frequently
appearing features among the top 20 features of all the
models. These most frequent 20 features are then used
to generate evasive phishing samples. This is based on
the intuition that, if a feature appears more frequently
at high ranks in the multiple models, it is more likely
to evade a running model.

Fig. 6: Robustness of noised model against attack evading the
top 20 features (this is the same scenario used to illustrate the
attack on the native model in Figure 2)

B. Results: single noised model

We analyze the single noised model, where noises are
inserted into the top 10 features. In Figure 6, we compare this
model with the native model, under normal scenario as well as
under evasion attack where the top 20 features are evaded. The
legend [x%] means, x% of the phishing test set was modified
for evasion. We observe that the noised model is much more
robust than the native model, against the evasion attack. Yet,
the AUPRC of the noised model is very close to the native
model when there is no evasion.

However, for a fair comparison, the noised model should
also be tested against an attack that evades on the top 20
features of the noised model (recall that, the feature ranking
changes when noise is inserted; and the evasion features
used above was the top 20 features of native model). Our
experiments showed that the noised model is weak against
attack [S2] that used top features from the noised model. The
AUPRC for 50% test evasion reduced from a high 0.987 (under
no evasion) to 0.791 (under evasion). This is not surprising
— given that the noised model is just another model with a
different ranking of features, it will also be weak against an
evasion attack targeting its own top features. For achieving
such a weak performance, the adversary has to build a noised
model on his own and then target the top features. Therefore,
building yet another model that changes the feature ranks does
not help against evasion attacks.

From now on, we show results for the case where 50% of
the phishing test set is modified for evasion.

C. Results: detection system with multiple randomized models

The key property we try to achieve with the multi-model
detection system is to have diverse feature ranking across
the different models generated. To validate, we generated 11
models using Algorithm 2. We now analyze the feature ranks
of the top 10 features of native model, in each of these 11
models. Figure 7 plots the feature rankings. Observe that the
top 10 features of the native model (marked on the Y-axis)
are distributed across a wide range of ranks for each model,
confirming to our goal of randomizing feature-rankings across

7

Fig. 7: Rankings of top 10 features of the native model in ran-
domly generated models M1...M11, following Algorithm 2.

Fig. 8: Performance comparison of randomly generated models
with the native model. Note, for better clarity, the X and Y
ranges are reduced to the higher end of the spectrum.

models. Recall that, for these models l1 ≥ 5; hence at least
five of the top 10 features of the native model are selected for
noise insertion in each of these randomly generated models.

Before testing the robustness of the multi-model detection
systems, we first evaluate the accuracy of each of the randomly
generated models; this is necessary as the feature rankings
in these models are different from the native model. More
importantly, random number of features are noised in each
of these models. As the precision-recall curves in Figure 8
confirm, the performance degradation by noise insertion is
small. The recall for 0.95 precision for the native model is
0.96, whereas that for the randomly generated models are in
the range [0.92, 0.94].

As discussed in Section III-C, we build two phishing
detection systems based on the multiple models generated. The
first one, R, chooses a model randomly each time a URL is
processed, whereas the second one, V , uses voting to decide on
the URL. Evidently, R requires execution of only one model
to make a decision, whereas V requires execution of all models
for an input URL. Figure 9 plots the performance of R under
the three evasion strategies. As there are 11 models, we plot the

Fig. 9: Detection performance of the multiple models in
average, against the three evasion attacks considering multi-
model system (R)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n
Recall

Native model
Voting system w/o evasion

w/ S1
w/ S2
w/ S3

Fig. 10: Detection performance of a voting system V against
the three evasion attacks

average of the 11 models in this figure. Under both [S1] and
[S3], for a precision of ∼ 0.9, a recall of 0.8 can be achieved.
For [S2], the recall at 0.9 precision drops to 0.7, which is
still significantly better than what the native model achieves
(around 0.55 recall at 0.9 precision). Interestingly, while [S3]
requires more knowledge of the system in operation than [S2],
the latter is a more effective attack than the former.

Figure 10 plots the performance of the voting system V .
Clearly, it performs better thanR that selects models randomly
in operation. Under all attacks, V achieves a recall of 0.9 for ∼
0.9 precision. We also provide the AUPRC values of the native
model and detection systems R and V in Table II. When there
is no evasion attack, all three models have similar performance.
The random attack [S1] does not degrade the accuracy of any
of the models. Whereas under [S2], the voting-based multi-
model detection system outperforms both the native model as
well as the detection system R that randomly picks one of the
models during operation.

Finally, we experiment in a scenario where the attacker
chooses different models against a deployed detection system.
The evasion strategy is a generalization of [S2] — attacker
generates 11 models (as we do for generating the random-
ized models) following Algorithm 2, thus creating models
M1,M2, . . .M11. In one experiment, the detection system
tested is a static model (one of these 11 models is selected
randomly for this purpose). In the second experiment, the
voting-based multi-model detection system V is used; that
is, we test against V which uses majority voting among
the same 11 models M1,M2, . . .M11 to classify a URL.
Figure 11 plots the results against the static model. The worst-
case performance is what happens if the attacker is “lucky”.

8

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n

Recall

evasion using M1
using M2
using M3
using M4
using M5
using M6

using M7
using M8
using M9

using M10
using M11

Fig. 11: Detection performance of a detection system with a
static model when attacked using a generalized [S2] evasion
strategy that uses features from random models to evade

TABLE II: AUPRC of multi-model systems against sophisti-
cated evasion attacks

Evasion type Native model R V
w/o evasion 0.991 0.983 0.987
S1 0.972 0.945 0.966
S2 0.892 0.900 0.947
S3 N/A 0.932 0.950

For precision of 0.8, the corresponding recall achieved is
approximately 0.5. This worst-case performance is noticeable
in the static model system with any of the 11 models as well
as with the native model. Whereas, as seen in Figure 12, for
the same attack against the voting-based detection system V ,
the recall at 0.8 precision in the worst-case is a high 0.84.
This experiment demonstrates that, the voting-based multi-
model detection system is not only better on average, but is
much better in the worst-case than a statically chosen model
generated via Algorithm 2.

V. DISCUSSIONS AND FUTURE WORK

Multi-model evasion with base model knowledge: We now
assume the strongest adversary. Though Algorithm 2 generates
different models at each execution, they all are essentially
selecting a set of features from a given static set of 51 features
for noise insertion. This static set of features implicitly defines
a base model built from the feature set without any noise,
and all the generated models are related to this base model
as the original feature vector is fixed. Even if an adversary
has knowledge of Algorithm 2, it will be extremely difficult
to figure out this base model (this would require breaching
the machine where the model is trained and successfully
performing runtime leak of the program), along with the fact
that there are exactly 11 models used in operation. Yet, we
assume such an adversary and evasion strategy here, to further
test our proposed detection system. The results are plotted
in Figure 13. The comparison of our proposed multi-model
detection systems is done with the native model. Note, for
the native model, the base model is the same as the native
model. We observe that the voting-based detection system
performs the best. For precision of 0.8, the recall achieved
is 0.9. Whereas, for the native model, 0.8 precision gives a
recall of less than 0.8.

Black-box attack to the multi-classifier system: Black-box
attack is a part of our threat model to learn the important

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n

Recall

evasion using M1
using M2
using M3
using M4
using M5
using M6

using M7
using M8
using M9

using M10
using M11

Fig. 12: Detection performance of the voting-based system (V)
when attacked using a generalized [S2] evasion strategy that
uses features from random models to evade

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pr

ec
is

io
n

Recall

Native model w/ evasion using top 20 features
R w/ evasion using top 20 features of the base model
V w/ evasion using top 20 features of the base model

Fig. 13: Detection performance of a multi-model system (R)
and a voting-based system (V) compared to the native model
when attacked using top 20 feature of the base model used to
create the multiple models

features, yet, the black-box attack also allows an adversary
to have his own substitute model [50], [37]. As it has been
reported that an ensemble of classifiers does not guarantee
robustness against adversarial samples [20], [3], the attacks
with adversarial examples based on the system output (instead
of the important features learned) should be considered as
a threat to our proposal. This sophisticated attack would be
considered for future work.

Evasion and noise insertion in Support Vector Machine:
Our proposed robust phishing detection system was based
on Random forest classifier, and so were the experiments
until now. Another widely used ML model is Support Vec-
tor Machine (SVM); and there have been studies on multi-
classifier approaches (e.g., SVM ensemble) for enhancing the
robustness and accuracy of SVM-based solutions [24]. We
now conduct a preliminary study to analyze the performance
of SVM classifier for phishing detection, including under the
evasion attacks. In addition, we also analyze how robust is a
noised SVM model against evasion attacks.

Specifically, we built an SVM model with the radial basis
function kernel and tested evasion attacks on 50% of the
phishing test set, wherein evasion was based on (i) random 20
features and (ii) top 20 features of the native model. We used
Algorithm 1 on the top 10 features of the native SVM model
to create a noised model. The results, depicted in Figure 14,
give interesting insights compared to the results from Random
forest models. One, the performance of the native SVM model

9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n

Recall

Native SVM model
w/ evasion using top 20 features

w/ evasion using random 20 features
Noised SVM model

w/ evasion using top 20 features
w/ evasion using random 20 features

Fig. 14: Effect of evasion attacks and noise insertion on an
SVM classifier; evasion on random 20 features and evasion on
top 20 features from Random forest model to a native SVM
and a noised SVM model

degrades significantly under evasion attacks. The degradation
is more pronounced when the evasive features are selected
from the top 20 features (based on Random forest classifier)
than when randomly selected. This means, knowledge of the
top features, even though it was based on Random forest
classifier, is helpful for an attacker to evade detection by
the classifier. Two, unlike in previous experiments (using
Random forests), the noised model experiences non-negligible
degradation in PRC (precision-recall curve) when noise is
injected into the native model.

And similarly, under evasion attack, the noised model is
not more robust than the native model. Thus the current noise
insertion approach is not directly applicable to SVM. However,
changing feature ranking is still a valid approach for improving
the robustness of SVM classifiers [10], [15].

VI. RELATED WORK

Adversarial examples and attacks targeting ML-classifiers
are not only an issue in the security domain but in others as
well [42], [9]. Meanwhile, security applications like phishing
and malware detection systems are relatively less threatened
by the causative attacks which target the training process and
training data [25] due to the special attention and inspection
on their training data; instead, their services in public are
open and hence vulnerable to exploratory attacks [4], [23],
[27]. There have been two streams of studies explored to
combat exploratory attacks (which rely on the knowledge of
an adversary); one is via robust modeling, while the other is
by preventing learning capability of the adversaries.

Kolcz et al. [25] analyze and report the cost and per-
formance of the robust modeling methods, in particular, by
feature re-weighting. Of the few approaches for building a
robust model by regularizing biased feature weights, the noise
insertion approach [52], [33] can be considered suitable in
domains that suffer from limited training set and risks not
only accidental failure of a model but also deliberate evasion
attacks (e.g., phishing page detection classifier).

On the other hand, the multi-classifier systems that are
widely used for better accuracy and fault-tolerance [21], [41]

are also considered as a countermeasure to prevent adversarial
learning; and that is primarily based on the diversity and
randomness achieved via the use of multiple models. Biggio
et. al. studied randomisation strategies based on multi-classifier
systems to prevent adversarial learning for evading a classifier,
and also confirmed that a multi-classifier system can be more
robust than a single classifier system in their series of stud-
ies [6], [7].

A recent study by Tong et al. [48] introduces the idea
of conserved features that are not modifiable without com-
promising the intended malicious functionality. They propose
an algorithm to automatically extract the conserved features
from the feature set and show effectiveness against evasion
attacks on PDF malware detection. While this is a promising
approach to limit the adversary in launching an evasive attack,
such features are limited in the case of phishing; for example,
much of the HTML features of a phishing page can be very
similar to that of a benign web page, without compromising
attacker’s goal.

VII. CONCLUSION

Application of machine learning for phishing detection has
been a promising direction in protecting end-users. However,
as demonstrated by recent works as well as in this paper,
ML-based phishing classifiers are also prone to adversarial
attacks. Based on the insight that an adversary, with sufficient
knowledge of machine learning algorithms and access to
typically used training datasets, can learn important features
for phishing detection, we explored an approach to randomize
feature ranking to build a robust phishing detection system.
Our proposed methodology makes it possible to create a
number of diverse models from the same training dataset as
well as the same feature set, and subsequently build a meta-
classification system. Evaluations on real dataset showed that
the voting-based multi-model phishing detection system not
only has similar performance as the native model when there
is no evasion attack, but is also more robust than the native
model under evasion attack.

ACKNOWLEDGEMENT

This research is supported by the National Research Foun-
dation, Prime Ministers Office, Singapore under its Corporate
Laboratory@University Scheme, National University of Sin-
gapore, and Singapore Telecommunications Ltd.

REFERENCES

[1] (2019) Phishing trends and intelligence report. [On-
line]. Available: https://info.phishlabs.com/hubfs/2019PTIReport/
2019PhishingTrendsandIntelligenceReport.pdf

[2] Alexa Internet, Inc, “Alexa top sites,” https://www.alexa.com/topsites,
2019.

[3] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial
examples,” arXiv preprint arXiv:1802.00420, 2018. [Online]. Available:
https://arxiv.org/abs/1802.00420

[4] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can
machine learning be secure?” in Proc. ACM CCS, 2006, pp. 16–25.

[5] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, “Bag-
ging classifiers for fighting poisoning attacks in adversarial classifi-
cation tasks,” in International workshop on multiple classifier systems.
Springer, 2011, pp. 350–359.

10

https://info.phishlabs.com/hubfs/2019 PTI Report/2019 Phishing Trends and Intelligence Report.pdf
https://info.phishlabs.com/hubfs/2019 PTI Report/2019 Phishing Trends and Intelligence Report.pdf
https://www.alexa.com/topsites
https://arxiv.org/abs/1802.00420

[6] B. Biggio, G. Fumera, and F. Roli, “Adversarial pattern classification
using multiple classifiers and randomisation,” in Proc. IAPR Joint Conf.
S+SSPR. Springer, 2008, pp. 500–509.

[7] ——, “Multiple classifier systems for robust classifier design in adver-
sarial environments,” Intl. Journal of Machine Learning and Cybernet-
ics, vol. 1, no. 1-4, pp. 27–41, 2010.

[8] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, “Exposure:
A Passive DNS Analysis Service to Detect and Report Malicious
Domains,” ACM Trans. Inf. Syst. Secur., vol. 16, no. 4, Apr. 2014.

[9] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted
attacks on speech-to-text,” in Proc. IEEE SPW, 2018, pp. 1–7.

[10] Y.-W. Chen and C.-J. Lin, “Combining SVMs with various feature
selection strategies,” in Feature extraction, 2006, pp. 315–324.

[11] J. Davis and M. Goadrich, “The relationship between Precision-Recall
and ROC curves,” in Proc. ACM ICML, 2006, pp. 233–240.

[12] O. Dekel, O. Shamir, and L. Xiao, “Learning to classify with missing
and corrupted features,” Machine learning, vol. 81, no. 2, pp. 149–178,
2010.

[13] B. A. Desai, D. M. Divakaran, I. Nevat, G. W. Peter, and M. Gurusamy,
“A feature-ranking framework for IoT device classification,” in Proc.
COMSNETS. IEEE, 2019, pp. 64–71.

[14] A. Y. Fu, L. Wenyin, and X. Deng, “Detecting phishing web pages with
visual similarity assessment based on earth mover’s distance (EMD),”
IEEE Trans. Dependable Secure Comput., vol. 3, no. 4, pp. 301–311,
2006.

[15] A. Globerson and S. Roweis, “Nightmare at test time: robust learning
by feature deletion,” in Proc. ACM ICML, 2006, pp. 353–360.

[16] Google Developers, “Google Safe Browsing.” [Online]. Available:
https://developers.google.com/safe-browsing/

[17] X. Guang, H. Jason, P. R. Carolyn, and C. Lorrie, “CANTINA+: A
feature-rich machine learning framework for detecting phishing web
sites,” in Proc. ACM TISSEC, 2011, pp. 1–28.

[18] I. Hafeez, A. Y. Ding, L. Suomalainen, A. Kirichenko, and S. Tarkoma,
“Securebox: Toward safer and smarter IoT networks,” in Proc. ACM
CoNEXT, 2016, pp. 55–60.

[19] X. Han, N. Kheir, and D. Balzarotti, “Phisheye: Live monitoring of
sandboxed phishing kits,” in Proc. ACM CCS, 2016, pp. 1402–1413.

[20] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adversarial example
defense: Ensembles of weak defenses are not strong,” in Proc. WOOT,
2017.

[21] T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision combination in multiple
classifier systems,” IEEE Trans. Pattern Anal. Mach. Intell., no. 1, pp.
66–75, 1994.

[22] S. Hossein, B. Bruhadeshwar, and R. Indrakshi, “Kn0W Thy Doma1N
Name: Unbiased Phishing Detection Using Domain Name Based Fea-
tures,” in Access Control Models and Technologies, 2018.

[23] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in Proc. ACM AISEC, 2011, pp. 43–58.

[24] H.-C. Kim, S. Pang, H.-M. Je, D. Kim, and S. Y. Bang, “Constructing
support vector machine ensemble,” Pattern recognition, vol. 36, no. 12,
pp. 2757–2767, 2003.

[25] A. Kołcz and C. H. Teo, “Feature weighting for improved classifier
robustness,” in Proc. CEAS. ACM, 2009.

[26] H. Le, Q. Pham, D. Sahoo, and S. C. Hoi, “URLNet: learning
a URL representation with deep learning for malicious URL
detection,” arXiv preprint arXiv:1802.03162, 2018. [Online]. Available:
https://arxiv.org/abs/1802.03162

[27] B. Liang, M. Su, W. You, W. Shi, and G. Yang, “Cracking classifiers
for evasion: a case study on the Google’s phishing pages filter,” in Proc.
WWW, 2016, pp. 345–356.

[28] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
learning to detect malicious web sites from suspicious URLs,” in Proc.
ACM SIGKDD, 2009, pp. 1245–1254.

[29] McAfee, “McAfee WebAdvisor.” [Online]. Available:
https://www.mcafee.com/consumer/en-sg/store/m0/catalog/mwad
528/mcafee-web-advisor.html

[30] D. K. McGrath and M. Gupta, “Behind Phishing: An Examination of
Phisher Modi Operandi.” vol. 8, 2008.

[31] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based phishing
detection,” in Proc. SecureComm. ACM, 2008.

[32] Mimecast, “Advancing Your Anti-Phishing Program,” 2018.
[Online]. Available: https://www.gartner.com/imagesrv/media-products/
pdf/mimecast/Mimecast-1-4QT9Y3H.pdf

[33] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach,
and J. Martens, “Adding gradient noise improves learning for very
deep networks,” arXiv preprint arXiv:1511.06807, 2015. [Online].
Available: https://arxiv.org/pdf/1511.06807.pdf

[34] I. Nevat, D. M. Divakaran, S. G. Nagarajan, P. Zhang, L. Su, L. L.
Ko, and V. L. L. Thing, “Anomaly Detection and Attribution in Net-
works With Temporally Correlated Traffic,” IEEE/ACM Transactions
on Networking, vol. 26, no. 1, pp. 131–144, Feb 2018.

[35] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and M. C.
Chan, “GEE: A Gradient-based Explainable Variational Autoencoder
for Network Anomaly Detection,” in IEEE Conf. on Communications
and Network Security (CNS), June 2019, pp. 91–99.

[36] OpenPhish, “OpenPhish,” https://openphish.com/, 2019.
[37] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and

A. Swami, “Practical black-box attacks against machine learning,” in
Proc. ACM CCS, 2017, pp. 506–519.

[38] PhishTank R©, “PhishTank,” https://phishtank.com/, 2019.
[39] V. Rakesh and D. Keith, “On the character of phishing urls: Accurate

and robust statistical learning classiers,” in Proc. ACM CODASPY, 2015,
pp. 111–122.

[40] B. D. Rouani, M. Samragh, T. Javidi, and F. Koushanfar, “Safe machine
learning and defeating adversarial attacks,” IEEE Security & Privacy,
vol. 17, no. 2, pp. 31–38, 2019.

[41] D. Ruta and B. Gabrys, “Classifier selection for majority voting,”
Information fusion, vol. 6, no. 1, pp. 63–81, 2005.

[42] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN:
Protecting classifiers against adversarial attacks using generative
models,” arXiv preprint arXiv:1805.06605, 2018. [Online]. Available:
https://arxiv.org/abs/1805.06605

[43] M. Samuel, F. Jrme, S. Radu, and E. Thomas, “PhishStorm: Detecting
phishing with streaming analytics,” vol. 11, no. 4, pp. 458–471, 2014.

[44] M. Samuel, S. Kalle, S. Nidhi, and A. N, “Know Your Phish: Novel
Techniques for Detecting Phishing Sites and Their Targets,” in Proc.
IEEE ICDCS, 2016.

[45] H. Shirazi, B. Bezawada, I. Ray, and C. Anderson, “Adversarial
sampling attacks against phishing detection,” in Data and Applications
Security and Privacy XXXIII, S. N. Foley, Ed., 2019, pp. 83–101.

[46] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and
evaluation of a real-time URL spam filtering service,” in Proc. IEEE
S&P, 2011, pp. 447–462.

[47] K. Tian, S. T. K. Jan, H. Hu, D. Yao, and G. Wang, “Needle in a
haystack: Tracking down elite phishing domains in the wild,” in Proc.
IMC. ACM, 2018, pp. 429–442.

[48] L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, and Y. Vorobeychik,
“Improving robustness of ML classifiers against realizable evasion
attacks using conserved features,” in Proc. USENIX Security, 2019, pp.
285–302.

[49] V. Total, “VirusTotal-free online virus, malware and URL scanner,”
2012. [Online]. Available: https://www.virustotal.com/en

[50] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Steal-
ing machine learning models via prediction apis,” in Proc. USENIX
Security, 2016, pp. 601–618.

[51] C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classifi-
cation of phishing pages,” in Proc. NDSS, 2010.

[52] Z. You, J. Ye, K. Li, Z. Xu, and P. Wang, “Adversarial noise layer:
Regularize neural network by adding noise,” in IEEE ICIP, 2019, pp.
909–913.

[53] L. Yukun, Y. Zhenguo, C. Xu, Y. Huaping, and L. Wenyin, “A stacking
model using URL and HTML features for phishing webpage detection,”
in Future Generation Computer Systems. Elsevier, 2019, pp. 27–39.

11

https://developers.google.com/safe-browsing/
https://arxiv.org/abs/1802.03162
https://www.mcafee.com/consumer/en-sg/store/m0/catalog/mwad_528/mcafee-web-advisor.html
https://www.mcafee.com/consumer/en-sg/store/m0/catalog/mwad_528/mcafee-web-advisor.html
https://www.gartner.com/imagesrv/media-products/pdf/mimecast/Mimecast-1-4QT9Y3H.pdf
https://www.gartner.com/imagesrv/media-products/pdf/mimecast/Mimecast-1-4QT9Y3H.pdf
https://arxiv.org/pdf/1511.06807.pdf
https://openphish.com/
https://phishtank.com/
https://arxiv.org/abs/1805.06605
https://www.virustotal.com/en

APPENDIX

FEATURE LIST

TABLE III: List of features used in our work here

Index Source Feature Explanation (refer to the cited works for further details)

1

URL

is domain ip If hostname is an IP address
2 num subdomain level Number of subdomain levels
3 has embedded domain If the path part of a URL contains dot separated domain/hostname patterns [17]
4 num url tokens Number of tokens in URL (non-alphanumeric characters)
5 has sensitive word If the URL contains any of [‘secure’, ‘account’, ‘webscr’, ‘login’, ‘ebayisapi’, ‘signin’, ‘banking’, ‘confirm’] [17]
6 is obfuscated url If IP addresses is represented in hex or octet format, or embedding path-traversal operations in a URL string. [46]
7 len domain Length of domain name
8 len path Length of path
9 len url Length of URL

10 num url dots Number of dots in the URL
11 has suspicious char url If the URL contains ‘@’ or ‘∼’, or the domain name contains ‘-’ [17]
12 has tld out of position If TLD is out of position [17]
13 len fqdn Length of the FQDN
14 len mld Length of the main level domains (MLD) [43]
15 num mld terms Number of terms in the main level domains [43]

16

HTML

has bad forms

If mutual satisfaction of following four conditions [17]:
1. existence of <form>,
2. <input>tag in the <form>,
3. keywords related to password/credit card number or no text at all but images only within the scope of HTML form
4. a non-https scheme in the URL in the action field or in the webpage URL when the action field is empty.

17 num terms in text Number of space delimited terms in text
18 num terms in title Number of space delimited terms in <title>
19 num input fields Number of <input>tags tags in the page
20 num images Number of tags in the page
21 num iframes Number of <iframe>tags in the page
22 num links Number of <link>tags in the page
23 ratio internal link Ratio of links under the same domain with the URL

24 num empty link
Number of following tag patterns [53]:
, or ,
or [‘#javascript::void(0)’, ‘#content’, ‘#skip’, ‘javascript:;’ , ‘javascript::void(0);’, ‘javascript::void(0)’]

25 has login form If <form>tag <input>sub-tag contain password or ‘pass or ‘login or ‘signin’ [53], [51]
26 len html style Length of HTML content in <style>
27 len html script Length of HTML content in <script>
28 len html comment Length of HTML content in <!-- >
29 len html form Length of HTML content in <form>
30 has alarm window If <script>tag contains ’alert’ or ’windows.open’ [53]

31 has hidden content

If contains any of the below [53]:
<div>: <div style = “visibility: hidden” >, or <div style=“display: none>.
<button>: <button disabled = “disabled” >.
<input>: <input type =“hidden” >, <input disabled =“disabled” >, <input value =“hello” >

32 has brand in title If brand [44] is in <title>
33 ratio internal resource Ratio of use of identical domain name in resources, linked URLs and embedded page URLs
34 num brand occurrence Times the brand appearing in HTML [44]
35 len html body Length of HTML code including tags and plain text
36 len html plain text Length of HTML plain text
37 max dom depth Maximum depth of DOM trees
38 dom node count Number of the end nodes (leaves) of DOM trees
39 dom node type Number of the unique end node types
40 dom node mean Mean of the end nodes’ depth
41 dom node std Standard deviation of the end nodes’ depth
42 ratio link same page Ratio of the hyperlinks or the resources’ links pointing to the same page
43 ratio link same folder Ratio of the hyperlinks or the resources’ links pointing to the same folder
44 num unique subdomain Number of unique sub-domains in HTML
45 num unique file type Number of unique file types in HTML
46 num sub directory Number of sub-directory
47 num unique directory path Number of unique directory path
48 directory depth mean Mean of the depth of directory paths
49 directory depth std Standard deviation of the depth of directory paths
50 min dist top words Minimum distance between top 5 words from HTML plain text and the words in each level of the domain name
51 ratio script in tags Ratio of script tags out of all the tags

12

	Introduction
	Motivation
	Background
	Evasion by mimicking benign values of targeted features
	Threat model

	Robust phishing page detection with feature ranking control
	Noise insertion on feature values
	Building multiple models having diverse feature rankings
	Robust phishing detection with multiple models

	Evaluation
	Experimental setup
	Results: single noised model
	Results: detection system with multiple randomized models

	Discussions and future work
	Related Work
	Conclusion
	References
	Appendix

