
Cross-Site Challenge-Response Attacks
Nethanel Gelernter

Dept. of Computer Science
College of Management Academic Studies

nethanel.gelernter@gmail.com

Itamar Peretz
Dept. of Computer Science

Ben-Gurion University of the Negev
itamarpe@post.bgu.ac.il

Abstract—The challenge-response mechanism is a computer
security method used to prevent access by unauthorized parties.
Similar to passwords, it involves a group of protocols in which one
party is asked a question and must provide a correct answer in
order to be authenticated. This work shows that using challenge-
response as a cross-site request forgery (CSRF) countermeasure
puts the challenge-response itself at risk.

The cross-site (XS) challenge-response attack uses brute-force
on the challenge-response mechanism in a cross-site manner,
relying on advanced techniques to bypass the same-origin policy.

We present and analyze two variants of the XS challenge-
response attack: (1) an unauthenticated variant in which visitors
to the attacking page are abused as bots that attempt to break the
challenge-response, and (2) an authenticated variant that directly
targets visitors to the malicious page.

Our work surveys the use of challenge-response by popular
websites, content management systems, IoT devices, and routers
to show that XS challenge-response vulnerabilities are common.
We created proofs of concept for the vulnerabilities discovered,
and ethically evaluated attacks under real-world conditions to
demonstrate the tangibility of the threat. Several vendors have
already confirmed these vulnerabilities, which affect millions of
users, and are working on fixes.

I. INTRODUCTION

The challenge-response method of authentication uses a
group of protocols in which one party presents a challenge,
and the other party must provide a correct response to be
authenticated.

Our work focuses on the feasibly guessable challenge-
response. These challenges are hard for a hacker to guess,
yet possible given many tries. Two examples of challenge-
response that are known to almost every web user are the
following:

1) Password. Although these can be chosen from extremely
large sets of options, it is known that passwords can be
guessed [13], [37], [32].

2) Secret code that is sent during the password activation
or reset process. Although they might be long, it is still
feasible to guess them. For example, Facebook uses a
six-digit password reset code, which can be guessed with
a success probability of one to a million per guess.

Feasibly guessable challenge-response (from now on referred
to as simply challenge-response) are widely used for au-
thentication. Passwords, the most common challenge-response
mechanism, are used as the primary account protection mech-
anism on the web. But passwords and other sensitive pieces
of information (e.g., confirmation number, ID number, or
order number) are also used as challenge-response for other
purposes. For example, users might be asked to provide a
confirmation/order ID to access the details of a purchase.
Another example is old passwords, which might be requested
when the user is changing to a new one. The most common
purpose of challenge-response on the web is to prevent remote
access to an account by unauthorized parties; for example, to
prevent attackers from signing in. Challenge-response is also
used to prevent local access. For example, it can be used to
prevent a change in account settings. Although passwords are
usually required when modifying sensitive account informa-
tion, websites may request different sensitive user information
such as email address, phone number, credit card details, and
so forth. In this way, even if an attacker physically accesses a
computer to which the user is authenticated, he cannot carry
out his malicious plan without overcoming the challenge.

Physical or remote access without any interaction with the
victim is not the only way to manipulate accounts. In the
absence of appropriate countermeasures, attackers can launch
a cross-site request forgery (CSRF) [31], which essentially
forces innocent web users to perform specific operations.
For CSRF, attackers often abuse the browsers of web-users
who surf their page, and trick them into sending requests to
different services. There exist several techniques that can be
used to prevent CSRF. Some of them rely on indications that
are sent via the browser [9], [6]. However, the most reliable
countermeasures that work for every browser, rely on a value
that is not known to the cross-site attacker and is attached
to the request. The server then verifies the existence and the
correctness of that value before it services the request. Section
II-A further explains the cross-site attacker model. Sensitive
operations such as logging or changing credentials should be
protected against all of the above-mentioned attacks. In many
cases, a single challenge-response is used to protect against
all of these attacks. For example, requiring the user to send
the current password when setting a new one, is expected to
block both local and cross-site attackers from gaining access.
We argue that relying on feasibly-guessable challenge-
response, such as passwords, to protect against the cross-site

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-60-6
https://dx.doi.org/10.14722/madweb.2019.23xxx
www.ndss-symposium.org



attacker exposes the challenge-response itself to a potentially
distributed cross-site brute-force attack. In brute-force attacks,
attackers try to break a challenge-response by guessing solu-
tions until the correct one is found.

In the cross-site (XS) challenge-response attacks presented
in this work, the attacker exploits the lack of dedicated CSRF
countermeasures to guess the challenge-response in a cross-
site manner. Basically, a cross-site attacker conducts a brute-
force attack by sending those requests in a cross-site manner,
each time using a different guess for the challenge-response.
Throughout the attack, the attacker uses response differen-
tiation techniques to detect whether a guess was successful
or not, bypassing the Same-Origin Policy [28] (see Section
II-A) when necessary. These techniques are used to identify
a specific characteristic of the cross-site HTTP response, for
example response size or status code. The fact that the attack
can be launched in a cross-site manner, means it costs nothing
for the attacker. Moreover, the ability to launch the attack in
a distributed manner, allows the attacker to bypass rate-limit
restrictions that are based on the source IP. We present two
variants of the attack:

Unauthenticated XS challenge-response. This variant is
characterized by sending cross-origin challenges to interfaces
that do not require authentication. The most common example
is a login interface. Obviously, users should not be authenti-
cated to web services in order to send sign-in requests. In this
example, the browser of the user visiting the attacking pages
is used to send many cross-site login requests, each with a
different password guess. The attacker uses cross-site response
differentiation techniques to detect whether the requests were
successful [19]. When a successful login is detected, this
indicates that the password guess was correct. See Figure 1.

Authenticated XS challenge-response. This variant fo-
cuses on sending cross-origin requests that require authenti-
cation to the account. For example, email modification can
usually be done only when the user is authenticated; but here,
a password is also needed to complete the change. In this
example, the attacker sends cross-origin email modification
requests, each with a different value for the current password.
The attacker exploits advanced techniques to distinguish be-
tween HTTP responses and check each request to see whether
or not it succeeded. Similar to the unauthenticated variant,
detection of a successful request indicates that a particular
password was guessed correctly. See Figure 2.

To the best of our knowledge, this work provides the
first extensive study on performing cross-site attacks to steal
sensitive information. We evaluate the efficiency of authenti-
cated and unauthenticated XS challenge-response attacks. We
further introduce a survey we conducted of the Alexa top
100 websites in the USA, showing that many of them are
vulnerable to the attack. We also tested the three most common
content management systems (CMS) and found that two of
them (30% of sites in the world [35]) are vulnerable to the
unauthenticated XS challenge-response attack via their login
interfaces. Moreover, we surveyed routers and IoT devices that
use web interfaces and found that most of them are vulnerable.

In this paper we make the following contributions:
• Introduce two variants of the XS challenge-response

attack: authenticated and unauthenticated. We show that
using a single challenge-response to protect against cross-
site attacks puts the challenge-response itself at risk.

• Describe a new cross-site response differentiation tech-
nique based on the Cache API mechanism.

• Analyze browser features and describe how they can be
used by an attacker to launch a large-scale attack.

• Survey the Alexa top 100 websites in the USA, most
popular content management systems (CMS), and IoT
devices and routers to understand the prevalence of
XS challenge-response vulnerabilities. We contacted the
many vulnerable vendors, some of whom already noted
they will block the vulnerabilities, which can affect
millions of users.

• Implement and evaluate the attack under real-world con-
ditions, proving that its risks are tangible.

• Propose solutions and defenses, with an emphasis on the
ease and practicality of quick deployment.

A. Ethics and Vulnerability Disclosure

The research in this paper exposes risks that exist on
many websites, including popular ones, alongside risks in IoT
devices and routers. We contacted all the vulnerable vendors
surveyed in this paper, most of them, close to the submission
deadline. We also created a website, in which we detail their
responses, and update it when the vulnerabilities are patched
or when vendors send their permission to be listed [11].
In our survey of the top 100 websites, there were several
websites that we either failed to contact or for which we cannot
publish details. In consultation with experts, we decided not to
publish any of the top-100 websites vulnerable to the attack.
When all the vulnerabilities are patched, we will publish a
comprehensive list. For similar reasons, we do not provide
details about the vulnerable models and versions of the tested
IoT devices and routers.

Upon request from the general chair, we will deliver the
full list to the reviewers. We designed and conducted all the
experiments with ethics as our main consideration. For details,
see Section VI-A.

II. PRELIMINARIES

This section explains the cross-site attacker model and the
attacker’s limitations in Section II-A. It lists the browser
features that are used to launch the attack efficiently in Section
II-B.

A. Cross-site Attacker Model

Modern browsers enforce security restrictions that allow one
website to send requests to another website of a different
origin, but prevent the sending website from reading the
response. A request that is sent from one website to another
is called a cross-site or cross-origin request. The Origin of a
website is defined by the combination of protocol, host, and

2



Fig. 1: Example of unauthenticated XS challenge-response
attack. The adversary exploits visitors to send cross-origin
login requests that try to crack the password of a victim. Then,
he uses response differentiation techniques to detect whether
password attempt was correct.

Fig. 2: Example of authenticated XS challenge-response at-
tack. The adversary exploits a victim that visits his website
to send authenticated cross-origin email modification requests
that try to crack the victim’s password. Response differenti-
ation techniques are then used to detect a successful email
modification.

port. This restriction is referred to as the same-origin policy
(SOP) [28].

Since cross-site requests are necessary for web connectivity,
and can be sent by any visited web page, websites must vali-
date the origin of requests for sensitive operations. Without this
validation, cross-site attackers can manipulate users’ accounts
(CSRF attack [31]) and even steal information [15], [24].

Many approaches have been suggested for blocking CSRF
attacks [14], [12], [27]. However, the only approach that is
effective without being dependent on client settings (e.g.,
browser support) involves attaching to each request a secret
that cannot be guessed by the attacker. Examples of such
mechanisms are the use of CAPTCHA [7], re-authentication,
and the use of anti-CSRF tokens. Among the aforementioned
solutions, anti-CSRF token is the only one that aims to pro-
tect solely against cross-site attackers. Anti-CSRF tokens are
unpredictable strings that are tied to the current session. The

tokens are generated by the website’s server, and are embedded
in pages the server returns. The server will serve an incoming
request only if it contains a valid anti-CSRF token. When
tokens are long enough and there are no implementation errors,
it is considered unfeasible to guess these tokens. Because
the cross-site attackers do not have access to the victim’s
session, and they cannot generate anti-CSRF tokens that match
the victim’s session, the server will not serve their cross-site
requests.

B. Advanced Browser Features

One of the main challenges of XS challenge-response
attacks is the need to send a massive number of requests
within a short time interval (i.e., the time in which users stay
on the attacking page). The more requests sent, the greater
the probability that the brute-force attack will succeed. The
attacker can use advanced browser techniques to create a large
number of requests for a targeted website. For example, service
worker [10] scripts are separate from web pages; they run in
the background and are independent of the web page in which
they are created.

To maximize the effectiveness of the attack, the attacker can
use another advanced browser feature known as the Fetch API.
This API, which is available in all modern browsers, can be
used to send a batch of HTTP requests in short time intervals.

III. CROSS-SITE RESPONSE DIFFERENTIATION

The XS challenge-response attack uses advanced side-
channel techniques to extract information that cannot be
achieved in a cross-site manner. This section surveys tech-
niques that can be used to bypass those limitations noted
in Section III-A. In Section III-B, we describe the cross-
site response differentiation technique we discovered; this
technique is possible due to the behavior of the Cache API
mechanism. We use these techniques as a black-box in the
description of the attack in the following section.

A. Known Response Differentiation Techniques

The same-origin policy [28] prevents attackers from ac-
cessing the content of cross-site HTTP responses. Previous
research also suggests several techniques to extract some
information. We briefly survey the relevant techniques and
pieces of information that can be extracted.

HTTP response size indications. Recent work shows that
a cross-site attacker can use advanced timing side-channel
techniques to extract the size of cross-site HTTP responses,
and obtain personal information regarding a user’s state [15],
[33].

HTTP response headers difference. Websites may condi-
tionally return responses with different headers, depending on
the user’s status. For example, Grossman [19] describes how
to detect whether a response message was returned with an
X-FRAME-OPTIONS header.

HTTP response content. Depending on the website imple-
mentation, it may even be possible to fully or partially extract
the content of HTTP responses. For example, one can exploit a

3



vulnerable JSONP endpoint to read the contents of a response.
JSONP is a method for sharing data in a cross-domain manner.
If a JSONP receiving endpoint is vulnerable, an attacker might
exploit this to bypass the SOP by injecting malicious Javascript
code into the response. An attacker could use the Javascript
as defined in Listing 1 to perform cross-site response differ-
entiation based on a vulnerable JSONP callback. It should be
noted that dynamically changing Javascript is an action that
can be detected, as described by Lekies et al. [22].

Listing 1: Response differentiation based on a vulnerable
JSONP callback
function abuse_jsonp(){

s = document.createElement("script");
s.src = "https://www.vulnerable.com?jsonp=
malicious_callback";
document.body.appendChild(s);

}

function malicious_callback(response){
if(response.length > THRESHOLD){

handle_valid_challenge();
}else{

handle_invalid_challenge();
}

}

B. Response Differentiation Using the Cache API

The methods described in Section III-A are up and running,
yet they do not provide a complete set of abilities to differen-
tiate between HTTP responses. Modifications that have been
implemented in the cache mechanism limit the efficiency of
previous works that deal with cross-origin response differentia-
tion by abusing the behavior of this mechanism. For example,
the Chrome browser adds virtual padding to responses, and
prevents HTTP response size indications attacks [16]. In
addition, works that rely on AppCache are only efficient under
special conditions [21]. We discovered a new response dif-
ferentiation technique to improve the XS challenge-response
attacks’ ability when it comes to detecting whether a correct
challenge was used.

The Cache API provides a storage and retrieval mechanism
to resources. Further, this API allows the caching of both same
and cross origin resources. To determine the storage usage of
cache, one can use the estimate method. However, this method
does not provide the correct usage of storage, as its main
purpose is to prevent the size of cross origin resources from
being leaked [18].

We found that caching a resource that redirects to a pre-
viously cached resource, results in a slight difference in the
used storage. The difference amounts to a few bytes, and it
is only affected by the length of the URL for the originally
fetched resource. In practice, the pseudo-code listed in Algo-
rithm 1 on the following page allows us to use this aspect
to perform cross-site response differentiation. This technique
can be employed to support both of the XS challenge-response
attacks.

For example, websites often return different responses to
HTTP requests, based on the login status of the user. Specif-
ically, an unauthenticated access to authenticated interfaces
is usually redirected to the login interface. Examples for
such URLs are shown in Listing 2. Given that, cross-origin
login detection is feasible. First, an attacker finds a resource
that only performs a redirect for a single type of access:
authenticated or unauthenticated. Next, two resources will be
downloaded and stored in cache: the redirect destination, and
the original page itself. After downloading and saving each of
the resources, the attacker will measure the storage used by the
cache. The difference between the storage usage measurements
can reflect the login status of a victim, and indicate whether an
unauthenticated XS challenge-response attempt used a correct
challenge.

Similarly, some websites return different responses based
on the validity of an HTTP request. Listing 3 shows URLs of
password modification interfaces that only redirect to another
location after a valid password modification attempt is made.

Consequently, we can use our response differentiation
technique to confirm whether an authenticated XS challenge-
response attack used the correct challenge.

Listing 2: Examples of web pages that redirect unauthenticated
access attempts to login interface
’https://www.facebook.com/settings’ ->
’https://www.facebook.com/login.php?next=...’

’https://vimeo.com/manage/videos’ ->
’https://vimeo.com/log_in’

’https://www.reddit.com/prefs/’ ->
’https://www.reddit.com/login?dest=...’

Listing 3: Examples of change password interfaces that redi-
rect after successful password modification
’https://twitter.com/settings/password’ ->
’https://twitter.com/settings/passwords/
password_reset_...’

’https://www.tumblr.com/settings/account’ ->
’https://www.tumblr.com/login?redirect_to=...’

’https://www.imdb.com/registration/
changepassword’ ->
’https://www.imdb.com/registration/
accountsetting...’

IV. XS CHALLENGE-RESPONSE ATTACK

This section introduces the XS challenge-response attack.
Sections IV-A and IV-B describe the unauthenticated and
authenticated variants of the attack, respectively. Section IV-C
summarizes and compares the attack variants. During the

4



Algorithm 1: Cross-site response differentiation based
on the behaviour of the Cache API mechanism

Function isRedirect(firstUrl, secondUrl):
cache.put(firstUrl)
firstResourceSize = storage.estimate()
cache.put(secondUrl)
secondResourceSize = storage.estimate()
diff = abs(secondResourceSize - firstResourceSize)
if(diff < secondUrl.length()):

return True
else:

return False

description of the attack, techniques that were surveyed in
Section II are used as a black-box.

A. Unauthenticated XS Challenge-Response

Unauthenticated requests are requests that do not require
an authenticated session attached to them in order to be
handled by the server. When unauthenticated requests include
a challenge-response, such as a password for login requests,
but do not include a dedicated anti-CSRF token, it is possible
to launch an unauthenticated XS challenge-response attack.
This attack sends the request in a cross-site manner with a
guess of the challenge-response and then detects whether or
not the guess is correct. Because authentication of the browser
is not required, the attacker can send the requests from the
browser of every visitor on his malicious web-pages. In short,
the attacker can easily launch a low-cost, distributed, brute-
force attack.
An HTTP request R can be abused for an unauthenticated XS
challenge-response attack if the following conditions hold:

1) R will be served by the website even when sent by an
unauthenticated user.

2) R includes a feasibly-guessable challenge-response.
3) R does not include a dedicated anti-CSRF countermea-

sure.
4) The responses for R with valid and invalid challenge-

response differ by status code or size, or can be differ-
entiated by any other technique.

The most common countermeasure against brute-force attacks
is a rate limit. Here, the server limits the amount of requests
that can be sent from a single source. Usually, this is done
based on the source IP address or the data that is targeted in
the requests.
IP-based rate-limit constrains the rate of requests that are sent
from a single IP address. This limit can be easily circumvented
by the unauthenticated XS challenge-response variant. The
attacker sends the requests in a distributed manner from the
browsers of different web-users who surf to the attacking
pages.
Data-based rate-limit restricts the number of requests that
are related to some piece of information. For example, it is

common to limit the number of login attempts to a specific
account. Given such a limit, XS challenge-response attacks
cannot efficiently break a challenge-response that is related to
a particular account. However, the attacker can still abuse the
visitors of his website, by trying the limited number of guesses
(e.g., most common passwords) for many accounts.
An attacker can also abuse the data-based rate-limit to conduct
a distributed denial of service (DoS) attack. This can be done
either for specific data (e.g., specific account) or on a large
scale for many accounts.

1) Examples: Beyond the login password brute-force attack
that was already brought as an example in Section I, there
are other cases in which an unauthenticated XS challenge-
response attack is possible. Two examples are as follows:
Credit-card brute-force. In a large ticketing website, we
found that it is possible to retrieve order data by giving the full
credit card number. Although the classical brute-force attack
was blocked by an IP-based rate-limit, we easily bypassed this
limitation using a distributed XS challenge-response attack.
Identification number and ID. We found a local government
website in which login can be done by giving the personal ID
and the date the identity document was created. Using the XS
challenge-response attack, we were able to simulate the attack
on ourselves. We bypassed the IP-based rate-limit, and were
able to successfully access private data.

B. Authenticated XS Challenge-Response

Authenticated requests are requests that are only handled
by a server if they are attached to an authenticated session.
Similar to the unauthenticated XS challenge-response attack,
when authenticated requests that include a challenge-response
are not protected from CSRF, an authenticated XS challenge-
response attack can be performed.
An HTTP request R can be abused for the authenticated attack
under the conditions described in Section IV-A, but with a
change of the first condition: the request must be sent as
part of an authenticated session. Unlike the unauthenticated
variant, the attack can be launched only against users who
are authenticated to the target website. Additionally, a visit
to the attacking page of browser with an active session of
the target site for some user, can be abused only against that
particular user. Hence, authenticated XS challenge-response
attacks cannot be launched in a distributed manner.

1) Examples: In Section I, we briefly described how an
authenticated XS challenge-response attack puts passwords in
danger by abusing credential-change requests. Although this
seems to be the most common example, we bring two more
scenarios in which the authenticated attack is feasible.

Pin code brute-force. We tested a website in which a
pin code was required for password modification. We found
that no protection from brute-force was implemented in this
interface. Because the pin code length was limited, we were
able to perform the attack and extract the pin code.

Email address modification. Changing an account’s email
address is considered a highly sensitive operation, since often
the email address can be used to reset the password. In our

5



Unauthenticated Authenticated
Accounts
in risk All accounts Visitors of the attack-

ing page
Data-based
rate-limit
effect

Can be abused for
DoS attack Failed

IP-based
rate-limit
effect

Distributed attack
works Irrelevant

TABLE I: Differences between authenticated and unauthenti-
cated XS challenge-response attacks.

survey (see Section V), we found seven websites that require a
password for email modification, but do not use dedicated anti-
CSRF countermeasures. A XS challenge-response attacker can
abuse the email-modification request to guess the password,
change the account’s email address, and take over the account.
On websites that send notification/verification email to the
new address, the attacker can detect the success of the attack
without the techniques mentioned in Section III-A; this is
because a successful guess of the password triggers the website
to send an email to the new email address, which is controlled
by the attacker.

C. Authenticated versus Unauthenticated XS Challenge-
Response

Table I summarizes the differences between the variants. As
shown in the table, the authenticated variant cannot effectively
handle a strict rate-limit. However, it is important to note that
rate-limit is less common and less strict when applied for
authenticated requests. Authenticated requests are harder to
forge and remote attackers should not be able to send them at
the beginning of the attack. Hence, they are less prone to brute-
force attacks. For example, login requests (unauthenticated
requests) can be easily abused for brute-force attack, hence,
it is more common to apply rate-limit countermeasures on
them. On the other hand, usually only logged-in users can
change their password (authenticated request). Our survey in
the section that follows shows that among the vulnerable
websites, rate-limit was more commonly used in the unauthen-
ticated requests we tested. To demonstrate the difference, we
conducted a small study and compared the rate-limit policies
applied on login requests (unauthenticated) and credential
change (authenticated). This was done on the 10 most popular
websites in the US [5] and on the 3 most popular CMSs. We
dropped duplicates (e.g., Google and YouTube) and websites
that do not require passwords for either login or credential
changes. The results can be found in Appendix A. Notice, not
all the websites in this brief study are vulnerable to the XS
challenge-response attack.

V. REAL-WORLD SURVEY

The previous section introduced authenticated and unau-
thenticated XS challenge-response attacks. To understand
whether these attacks present a widespread threat, we con-
ducted a survey of the most popular websites in the US [5]

and examined the three most widely used CMS systems [35].
We also surveyed the web interfaces of different IoT de-
vices. Our survey results indicate that XS challenge-response
vulnerabilities are quite common. Since we could not test
every kind of request that includes sensitive information as
challenge-response, we chose to focus on the most common
cases for each variant. We focused on login requests as
unauthenticated requests, and on credential modification as
authenticated requests. For websites in which email alone can
be used to reset the password, we also examined email mod-
ification requests. Almost every website with users supports
all of the requests noted here. In the survey, we consider a
request to be vulnerable to the XS challenge-response attack
if it contains a password but does not contain a dedicated
CSRF countermeasure. Websites that included only anti-CSRF
mechanisms, or did not include any protection mechanisms,
were not counted. We provide a more detailed explanation
about how we reported the vulnerabilities and the subsequent
responses in Appendix B.

A. Top Alexa Websites

Testing XS challenge-response attacks on a large scale is
difficult. Moreover, accurately detecting anti-CSRF mecha-
nisms is challenging, given the many different technologies
used in websites. This is even more difficult to test using
automatic registration for websites and attempting to correctly
detect the credential modification request.

Fig. 3: Number of websites that impose brute-force limitations
on authenticated and unauthenticated requests, considering IP-
based and account-based rate limits. The IP-based rate-limit
is irrelevant for authenticated requests.

Hence, to evaluate the existence of XS challenge-response
vulnerabilities, we manually audited the top 100 websites in
the US according to Alexa [5] 1. We examined the login
process for each website and classified them based on the
security countermeasures used. Then, we created an account
for each website and examined the security mechanisms used
in their credential modification process. Our survey discovered
21 and 13 XS challenge-response vulnerabilities for the unau-
thenticated and authenticated variants, respectively. Among
the 100 tested websites, 9 were vulnerable to both variants,
12 only to the unauthenticated variant, and 4 only to the
authenticated variant.

1We used the first 100 websites to which we could register without paying.
For example, we did not survey banks.

6



Among the 13 websites that were vulnerable to the authenti-
cated variant, 12 were vulnerable through password modifica-
tion, 3 through email modification, and 2 through both of them.
Our survey also evaluated the brute-force countermeasures
in the vulnerable websites. Among the websites that are
vulnerable to the authenticated variant, only 2 applied brute-
force protection in authenticated interfaces. Among the 21
websites that are vulnerable to the unauthenticated variant, 8
applied brute-force protection in the login interface. Figure 3
shows the brute-force protection evaluation in unauthenticated
interfaces, with consideration for IP-based and account-based
limitations. For each vulnerability, we created an exploit and
simulated the attack successfully on our own accounts in the
vulnerable website. Namely, we succeeded in distinguishing
between the requests that included the correct guess and other
requests that did not, in a cross-site manner (see Section
III-A). We are keeping the identity of the vulnerable websites
confidential due to ethical limitations 2. Our findings indicate
that the sensitive data belonging to millions of users registered
on those websites is exposed to attacks. Moreover, the results
reveal the high volume of vulnerable websites that can be
targeted by attackers.

B. Wordpress, Joomla, and Drupal

Since we were not able to manually audit millions of
websites, we decided to audit the most popular content man-
agement systems (CMS), used by millions of websites. CMSs
are applications that facilitate content and user management
in websites. Wordpress, Joomla and Drupal are the most
popular CMSs used today [35]. Wordpress is used by 28.7%
of all the websites; Joomla and Drupal are used by 3.2%
and 2.3%, respectively. We found that the login interfaces
of Wordpress and Drupal are vulnerable to unauthenticated
XS challenge-response attack. This is due to their lack of
anti-CSRF mechanisms, other than the password itself. Unlike
Wordpress, Drupal has an IP-based rate-limit. Yet, this limit
cannot prevent effective distributed attacks. None of the sys-
tems we audited are vulnerable to the authenticated variant of
the attack via password or email modification. In Wordpress,
we also considered the use of security plugins. We audited
Wordfence and All In One WP Security, the most popular
Wordpress security plugins, with more than 2, 600, 000 active
installations [38], [8]. The plugins add a layer of protection
to Wordpress login by implementing an IP-based rate-limit as
a countermeasure to brute-force attacks. However, since they
do not implement any CSRF countermeasures, the many web-
sites that use Wordpress with these security plugins are still
vulnerable to unauthenticated XS challenge-response attacks.

C. IoT Devices and Routers

At the time of writing, there are approximately 20 billion
connected IoT devices [29] in the world. Considering this
growing number of IoT devices, we surveyed popular products

2We have not yet succeeded in contacting all of them. Moreover, for some
websites we reported the vulnerabilities through bug bounty programs that
prohibit publication.

that use web interfaces in order to detect whether they are
vulnerable to unauthenticated XS challenge-response attacks.
We did not survey the feasibility of the authenticated variant
since users are less likely to be authenticated to IoT web
interfaces through their browsers.

IoT devices are considered insecure due to their widespread
use of default usernames and passwords. Using automatic
tools, attackers can scan for public IoT web interfaces that use
default credentials and use the results to take over the devices
[30], [25]. The obvious countermeasure is for users to change
the password. However, it is possible to launch unauthenticated
XS challenge-response attacks on IoT devices if their login
interface does not have added anti-CSRF protection. We
researched the login interfaces of several IoT devices available
to us, including popular models of closed-circuit televisions
(CCTV) manufactured by: Sony, Hikvision, Defeway, and
Foscam. Out of 14 different devices we surveyed, 8 were found
to be vulnerable. We also surveyed the login interfaces of
routers available to us. In contrast to IoT devices, most routers
are only accessible from the local network of the victim.
Hence, attackers cannot launch unauthenticated XS challenge-
response attacks in a distributed manner. Many routers use
default passwords, and when anti-CSRF mechanisms are not
deployed on sensitive functions like changing the DNS server,
the routers are exposed to attacks from the local network [26],
[1].

Our survey examined the login interfaces of 5 routers avail-
able to us from 4 popular manufacturers: TP-Link, D-Link,
Huawei, and Asus. Of these routers, 3 out of 5 (from 2 out of
4 manufacturers) were found vulnerable to unauthenticated XS
challenge-response attack. Our results indicate that changing
the default password of devices does not provide sufficient
protection. As long as web interfaces of IoT devices and
routers use password as challenge-response without proper
CSRF countermeasures, the password can be bruteforced in
a cross-site manner.

VI. EVALUATION

Section V showed the widespread existence of XS
challenge-response vulnerabilities. We created a proof of con-
cept of the attack for each vulnerable website, CMS, and IoT
device. Although we measured their rate-limit, we could not
test the attack on each of them by sending millions of requests,
since this goes beyond what is ethical. This section describes
a more in-depth simulation of the attack under real world
conditions, where millions of requests might be necessary to
complete the attack. Based on the simulations, we evaluated
the effectiveness of the attack. Specifically, we conducted
two experiments that simulated the variants of the attacks
on websites surveyed in Section V-A. Section VI-A outlines
the design and the execution process of both experiments.
Sections VI-B and VI-C describe the experiments for the
unauthenticated and the authenticated XS challenge-response
attacks, respectively. Section ?? evaluates the effectiveness of
using advanced browser features, as surveyed in Section II-B.

7



A. Experimental Outline

Design. We chose two vulnerable websites from the survey,
one for each XS challenge-response variant. We built a website
for each of them, and made the requests and the response in the
relevant interfaces completely identical. The only difference in
the requests was the hostname. The responses for the requests
for both correct and incorrect password guesses were identical
to the original websites. To distinguish between correct and
incorrect guesses, we used the same methods created for the
original websites.

Participants. To perform all the experiments, we recruited
105 students from our institutes; all of them are studying
security courses. The students did not know the goal of the
experiment, but were told that their participation might lead
to slower performance of some of their digital devices for
a limited time period. Although we did not expect this to
happen, the performance degradation could be influenced by
many cross-site requests. The students gave their permission
at the beginning of the semester and were told that the
experiment would take place sometime during the semester.
We encouraged them to detect any manipulation we tried
to apply on them. Retrospectively, it turned out that many
students expected us to launch phishing attacks on them.

Execution. We added a reference to an external resource
for two exercises during the semester. This external resource
was a webpage from which we simulated the attack. We chose
to lure the victims to the attacking page that way, because in
reality, attackers would make similar attempts. For example,
attackers can publish a resource that is relevant for students
in a forum of students.

We did not embed the malicious script in the attacking page,
but included it as an external file. In the title of this script file
we wrote a message for the students and asked them to contact
us if they read it. This way, we could learn if the attack was
detected.

Ethics. To receive IRB approval, we designed the exper-
iments with two purposes in our mind: (1) avoid harming
websites and (2) avoid harming users. Below we detail the
steps taken.

We easily achieved the first goal by launching the attack
on our own servers. It was more challenging to avoid any
potential damage to the participants. Although we informed
the users that they might feel some performance degradation,
we made efforts to avoid it. We first tested the attack on many
computers and browsers to make sure the attack did not cause
any damage or degrade the user experience. Additionally, we
did not launch the attack on mobile devices that surfed to the
experiment page, as their bandwidth is sometimes limited. In
total, the traffic that was generated by the attacking page was
less than an average YouTube page’s traffic; the CPU change
measured was negligible. The cookies we planted in the users’
browsers were not linked to specific users, and did not contain
any information other than statistics about the visits to the
attacking page. Except for the known fact that the students
are participants of security courses, we avoided collecting any

additional data about them.

B. Unauthenticated XS Challenge-Response Attack Evaluation

We conducted the experiment on a website that simulated
the login interface of a vulnerable website from Alexa Top
100 in USA. The experiment confirmed the feasibility of
unauthenticated XS challenge-response attacks that try to
crack the password of a predefined user in the targeted website.

On the client side, similar to the original website exploited,
we used a SOP bypass, as described in Section III-A, to detect
whether a login attempt succeeded. Specifically, we exploited a
vulnerable JSONP file that conditionally had different content
for unauthenticated and authenticated users. On the server,
we stored a large list with half a million different password
guesses. When a user surfed to the attacking page, the page
retrieved 50 password guesses that had not been tested. The
attacking page checked if any of the passwords guessed were
correct, and then continued to test another batch of 50 guesses.
For efficiency, the attacking page retrieved the next guesses
while the previous batch was being tested. Once the test of a
batch ended, the attacking page sent a summary of the test to
the server. Guesses were retrieved from the list in their order.

We wanted to measure how long it takes to break a
password and how much time the user must remain on the
site. Because password strength varies between passwords, we
had to simulate cases in which the correct password is at the
beginning of the list (easy to guess), where a few guesses
are enough, and when the correct password appears at higher
indexes (harder to guess). In the list of password guesses,
we planted the correct password multiple times, in a set
of indexes Iu = {1K, 10K, 25K, 50K, 100K, 250K, 500K}.
Figure 5 shows how much time it took to discover the

Fig. 4: Success rate in authenticated XS challenge-response
experiment for passwords that were guessed correctly in the
ith guess (i ∈ Ia), distributed based on the total on-site time
of the users.

password that appears in index i ∈ Iu, and how much on-
site user time was required. All the passwords were guessed
correctly without false-positives. The passwords in the lower
indexes that represent easy-to-guess passwords, were guessed
quickly. The hardest passwords (250K and 500K guesses)
were completed within a few days. The total on-site user time
needed to complete half a million guesses was 6 hours; it was

8



achieved within 5 days with at most 105 different web users
who could visit the attacking page. The more visitors to the
attacking page, the faster the attack could be completed.

C. Authenticated XS Challenge-Response Attack Evaluation
In order to validate the authenticated variant of XS

challenge-response attacks, we created a website that simulates
the credential modification interface of a vulnerable website
from the Alexa Top 100 in the US. The attack exploits a form
that requires the old password but does not have any dedicated
anti-CSRF countermeasures. To detect if a password guess was
correct, we relied on the original website’s exploit, in which
the responses were distinguished by their status code and size
(see Section III-A). Unlike the unauthenticated XS challenge-
response attack experiment (Section VI-B, the authenticated
variant cannot be distributed. The attack is launched against
users of the vulnerable site when they are signed into it. The
visit of each user is exploited to break his own password.
None of the participants were users of the target website that
we created. Therefore, upon the first visit of the user to the
attacking page, we created an account for the user in the target
website. The attack phase was similar to the experiment of
the unauthenticated variant (Section VI-B), but the attack was
launched separately against each user. On the server side, there
was a list of 25K guesses. The guesses were used against
each account in the target website, once the corresponding
participant surfed to the attacking page.

For each account, we put a correct guess in indexes Ia =
{1K, 5K, 10K, 25K}. We measured the number of users for
whom we detected a correct guess for every index, as a
function of their visit duration on the attacking page. This
experiment included 241 different accounts that were created,
because some participants used different machines/browsers or
cleared their cookies (e.g., incognito mode). Figure 4 shows
the success rate of the attack for the different offsets of the
correct password (Ia), as a function of the users total on-site
time.

Fig. 5: Total visit duration in the attacking website during
the unauthenticated XS challenge-response attack experiment.
The black markers indicate successful guesses of the correct
password and its offset.

VII. DEFENSES

The previous sections describe variants of the XS challenge-
response attacks. We showed that popular websites, content

management systems, and IoT web interfaces are vulnerable
to the attacks. This leaves millions of websites and many
more users in danger. In this section, we briefly survey
possible defenses. Similar to other cross-site attacks [31], [15],
the mitigation can be done by blocking cross-site requests.
Specifically, every request that includes a challenge-response
must be protected with a dedicated anti-CSRF countermeasure.

Servers can detect cross-site requests based on the Origin
and Referer headers in HTTP requests [9]. Because in some
cases attackers can omit those headers, the server must block
every request that does not include them. Another protection
mechanism is validation of the anti-CSRF token, which should
be sent as a parameter of the request. The token should
be randomly generated such that attackers cannot predict its
value. A newer CSRF solution uses the SameSite attribute
for website cookies. A SameSite cookie will not be sent
along with cross-site requests. Using this attribute ensures
that authenticated requests cannot be sent in a cross-origin
manner, hence preventing the authenticated XS challenge-
response attack. However, at the time of writing, this attribute
is only supported by Chrome and Opera [23]. A rate limit
based on the source IP cannot prevent unauthenticated XS
challenge-response attacks, as seen in previous sections. Rate
limits based on data that constrain the requests related to a
particular account, can be used to limit the effect of the attack.
However, without dedicated CSRF countermeasures, such a
rate limit could lead to a DoS attack. The attacker can send
many requests to reach the rate limit and to prevent legitimate
users from doing so. Combining a strict IP-based rate limit
and data-based rate-limit can mitigate the DoS threat, since the
requests in the unauthenticated XS challenge-response attack
do not arrive from the IP address of the attacked account. The
use of strong (i.e., long and hard to guess) CAPTCHA [7] is an
alternative to rate-limit and to other anti-CSRF mechanisms.
Users must solve a challenge to send a request. However,
CAPTCHA comes at the cost of degrading the user experience.

It could be argued that XS challenge-response attacks would
not be successful without the ability to distinguish between
two cross-site HTTP responses (Section III-A), and hence,
mitigation should be done there. However, because informa-
tion leaks occur in all browsers today via side-channels [15],
[33], we believe this is not the recommended way to deal with
the XS challenge-response threat. It appears that a practical,
comprehensive solution for this browser-level problem does
not exist, and will not appear in the near future. Hence,
solutions should be applied at the website-level.

VIII. RELATED WORK

Cross Site Attacks. Cross-Site Request Forgery (CSRF) is a
web application attack that aim to perform an action on behalf
on a victim. The most common related attack to our work is
login cross-site request forgery (CSRF) [9]. In this attack, the
attacker sends an unauthenticated request to log visitors of his
webpage into his own account on third-party websites. When
the victim is signed into the attacker-controlled account, the
attacker can extract information about the victim’s operations,

9



e.g., from history features that are available in many websites.
A comprehensive survey on CSRF vulnerabilities in popular
websites was performed by Zeller et al. [39] to gather infor-
mation about awaresness of site administrators of the risks and
existence of these vulnerabilities. They also offered server and
client side tools to protect users from CSRF attacks.

In several websites that do not have history-based features,
this attack is not considered a risk. Indeed, bug-bounty pro-
grams including Yahoo [4] and Dropbox [3] exclude this
threat. Our work shows that even if a login-CSRF cannot be
used to harm the victim by logging-in to an attacker-controlled
account, it is possible to abuse cross-site login requests
to crack passwords. In the unauthenticated XS challenge-
response attack, the attacker launches a distributed attack
from the browsers of visitors to his website. Antonatos et
al. [20] first described this model, and called it puppetnets.
The authors showed how a group of web clients who visit an
attacker-controlled website can be abused to perform malicious
activities in a distributed manner.

Cross-Site Response Differentiation. Cross-site response
differentiation is a method to retrieve information on responses
for requests sent in a cross-site manner. In XS challenge-
response attacks, it is necessary to identify whether the correct
challenge was used. To overcome this obstacle, we were
required to find and implement techniques for distinguishing
between different HTTP responses. Some of the methods we
used are presented in previous studies.

Van Goethem et al. [16]) discovered several methods for
exposing the size of a cross-origin resource. Their new tech-
niques allow the discovery of resources size in short time in-
tervals, using design flaws they found in storage mechanisms.
Lee et al. [21] also proposed an attack that allows an adversary
to detect the status code of cross-site requests. This attack
exploits the cross-origin AppCache mechanism. Gelernter et
al. [15], [24] presented timing side-channel attacks in order to
extract private information by sending cross-origin requests.
These attacks exploit the fact that various search interfaces
are not protected by anti-CSRF countermeasures. As a result,
an adversary can extract sensitive information about a victim
by analyzing the responses of cross-site search requests.

Advanced Browser Features. Our work is not the first
to use service workers for malicious purposes. Homakov
[2] described how to build a botnet on service workers by
exploiting a vulnerability that allows the infinite execution of
Javascript code. Van Goethem et al. [33] showed how service
workers are used in side-channel timing attacks.

Password Guessing. Work related to effective password
guessing is orthogonal to our work, and can be applied to
further improve the effectiveness of XS challenge-response
attacks. Beyond relying on dictionaries of common passwords
to break passwords, several works showed that information
about the victim [36] or information about passwords used in
other websites [13], [40] can be used to improve password
guessing. Other works [37], [17] use training methods on
existing password sets to create efficient password generators.

IX. CONCLUSIONS

In this paper, we introduced two vulnerabilities of the XS
challenge-response class. Contrary to classic cross-site attacks
which aim to perform an action on behalf of a victim, our in-
troduced attacks use cross-site vulnerabilities to steal sensitive
information. The main observation of our work is that the use
of challenge-response without using CSRF countermeasures
puts the challenge response at risk.

To understand the prevalence of this class of security
vulnerabilities, we performed a real-world analysis of Alexa
Top 100 websites in the USA, most popular CMS, IoT devices,
and routers, to gain insight into the feasibility and efficiency
of the attacks.

We reported our findings to the many vulnerable websites
and vendors. Some of them, e.g., Wordfence [38], Reddit,
Zillow, and Foscam, already confirmed the vulnerability and
are working on fixing it. Further, we created a website [11] to
keep an updated list of the vendors’ responses. We believe that
the publication of this paper will help increase the awareness
of XS challenge-response attacks, and encourage websites and
vendors to protect their users.

Finally, we proposed solutions and defenses against the
attack, using well-known and efficient concepts, such as anti-
CSRF token, headers validation and SameSite cookies.

ACKNOWLEDGEMENTS

We would like to thank Prof. Ehud Gudes and Tomer
Brami for their help in promoting this research. This research
was supported by a grant from the Ministry of Science and
Technology, Israel.

REFERENCES

[1] Routers Default Passwords, December 2012,
https://www.itworld.com/article/2716804/security/if-your-router-is-
still-using-the-default-password–change-it-now-.html .

[2] Botnets on ServiceWorkers, December 2016,
https://sakurity.com/blog/2016/12/10/serviceworker_botnet.html.

[3] Dropbox Bug Bounty Program, May 2016,
https://hackerone.com/dropbox.

[4] Yahoo Bug Bounty Program, November 2016,
https://hackerone.com/yahoo.

[5] Alexa Top USA Sites, February 2017,
http://www.alexa.com/topsites/countries/US.

[6] OWASP SameSite Cookie, April 2017,
https://www.owasp.org/index.php/SameSite.

[7] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford,
“CAPTCHA: Using Hard AI Problems for Security,” in
EUROCRYPT. Springer-Verlag, 2003, pp. 294–311. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1766171.1766196

[8] All In One WP Security, All In One WP Security,
https://he.wordpress.org/plugins/all-in-one-wp-security-and-firewall/.

[9] A. Barth, C. Jackson, and J. C. Mitchell, “Robust Defenses for
Cross-Site Request Forgery,” in ACM Conference on Computer
and Communications Security, P. Ning, P. F. Syverson, and
S. Jha, Eds. ACM, 2008, pp. 75–88. [Online]. Available:
http://doi.acm.org/10.1145/1455770.1455782

[10] Chrome Developers, Chrome Service Workers,
https://developers.google.com/web/fundamentals/getting-
started/primers/service-workers.

[11] Cross-Site Challenge-Response Researcher(s), Cross-Site Challenge-
Response Reports, 2017, https://xsreports.weebly.com.

10



[12] A. Czeskis, A. Moshchuk, T. Kohno, and H. J. Wang, “Lightweight
server support for browser-based CSRF protection,” in Proceedings of
the 22nd international conference on World Wide Web, 2013, pp. 273–
284.

[13] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
web of password reuse.” in NDSS, vol. 14, 2014, pp. 23–26.

[14] P. De Ryck, L. Desmet, W. Joosen, and F. Piessens, “Automatic
and precise client-side protection against CSRF attacks,” in Computer
Security–ESORICS 2011. Springer, 2011, pp. 100–116.

[15] N. Gelernter and A. Herzberg, “Cross-site search attacks,” in Proceed-
ings of the 22nd ACM Conference on Computer and Communications
Security, ser. CCS ’15, 2015, pp. 1394–1405.

[16] T. V. Goethem, M. Vanhoef, F. Piessens, and W. Joosen,
“Request and conquer: Exposing cross-origin resource size,” in
25th USENIX Security Symposium (USENIX Security 16). Austin, TX:
USENIX Association, Aug. 2016, pp. 447–462. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/goethem

[17] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “Passgan:
A deep learning approach for password guessing,” arXiv preprint
arXiv:1709.00440, 2017.

[18] Jeff Posnick, Google, Estimating Available Storage Spacety,
https://developers.google.com/web/updates/2017/08/estimating-
available-storage-space/.

[19] Jeremiah Grossman, “I Know What Websites You Are
Logged-In To (Login-Detection via CSRF),” 2009. [Online].
Available: http://blog.whitehatsec.com/i-know-what-websites-you-are-
logged-in-to-login-detection-via-csrf/

[20] V. Lam, S. Antonatos, P. Akritidis, and K. G. Anagnostakis, “Puppetnets:
misusing web browsers as a distributed attack infrastructure,” in Pro-
ceedings of the 13th ACM conference on Computer and communications
security. ACM, 2006, pp. 221–234.

[21] S. Lee, H. Kim, and J. Kim, “Identifying cross-origin resource status
using application cache,” in 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, 2015. [Online]. Available:
https://www.cc.gatech.edu/ slee3036/papers/lee:appcache.pdf

[22] S. Lekies, B. Stock, M. Wentzel, and M. Johns, “The unexpected dangers
of dynamic javascript.” in USENIX Security Symposium, 2015, pp. 723–
735.

[23] Mozilla Developer Network, Set-Cookie,
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-
Cookie.

[24] Nethanel Gelernter, “Timing Attacks Have Never Been So Practical:
Advanced Cross-Site Search Attacks,” in Black Hat USA, 2016.

[25] New York Times, NYT Mirai. [Online]. Avail-
able: lhttps://www.nytimes.com/2016/10/22/business/internet-problems-
attack.html

[26] M. Niemietz and J. Schwenk, “Owning your home network: Router
security revisited,” arXiv preprint arXiv:1506.04112, 2015.

[27] Paul Petefish, Eric Sheridan, and Dave Wichers,
Cross-Site Request Forgery (CSRF) Prevention Cheat
Sheet, 2015, https://www.owasp.org/index.php/Cross-
Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet.

[28] J. Ruderman, Same Origin Policy for JavaScript, 2001,
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript.

[29] Statista, IoT Usage, https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/.

[30] TechRepublic, IoT Attacks. [Online]. Available:
http://www.techrepublic.com/article/report-iot-attacks-exploded-by-
280-in-the-first-half-of-2017/

[31] The Open Web Application Security Project, Cross-Site
Request Forgery, 2010, https://www.owasp.org/index.php/Cross-
Site_Request_Forgery_(CSRF).

[32] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri,
D. Kurilova, M. L. Mazurek, W. Melicher, and R. Shay, “Measuring
real-world accuracies and biases in modeling password guessability.” in
USENIX Security, 2015, pp. 463–481.

[33] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The clock is still
ticking: Timing attacks in the modern web,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 1382–1393.

[34] W3Counter, Browsers Usage, https://www.w3counter.com/globalstats.php.
[35] W3Techs, CMS Usage. [Online]. Available:

https://w3techs.com/technologies/overview/content_management/all

Unuthenticated
requests limit

Authenticated
requests limit

Gmail 20 50
Facebook 20 150
Twitter 15 100
Reddit 10 No rate limit
Linkedin 5 200
Amazon 5 600
Netflix 6 150
Espn 5 No rate limit
Imgur 3 1300
Cragislist 3 No rate limit
Wordpress No rate limit No rate limit
Joomla No rate limit No rate limit
Drupal 5 No rate limit

TABLE II: Rate limit thresholds, surveyed against Alexa Top
10 Websites in the US, and below, for most popular CMS.

[36] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted on-
line password guessing: An underestimated threat,” in Proceedings of
the 2016 ACM SIGSAC conference on computer and communications
security. ACM, 2016, pp. 1242–1254.

[37] M. Weir, S. Aggarwal, B. De Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in Security and
Privacy, 2009 30th IEEE Symposium on. IEEE, 2009, pp. 391–405.

[38] Wordfence, Wordfence, https://wordpress.org/plugins/wordfence/.
[39] W. Zeller and E. W. Felten, “Cross-site request forgeries: Exploitation

and prevention,” The New York Times, pp. 1–13, 2008.
[40] Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern

password expiration: An algorithmic framework and empirical analysis,”
in Proceedings of the 17th ACM conference on Computer and commu-
nications security. ACM, 2010, pp. 176–186.

APPENDIX A
RATE LIMIT SURVEY

This appendix demonstrates the rate-limit difference be-
tween authenticated and unauthenticated requests, beyond the
results presented in Section V-A (see also Figure 3). We
conducted a survey on the Alexa Top 10 websites in the USA
that are relevant to the claim 3. We also surveyed the CMS sites
mentioned in Subsection V-B: Wordpress, Joomla, and Drupal.
For each, we tested how many requests can be sent until a rate
limit is applied in authenticated (credentials modification) and
unauthenticated (login) interfaces that use challenge-response.
If no rate limit was applied after 1500 requests, we concluded
that there is no rate limit.

Similar to the results from Section V-A, the results that
appear in Table II, reflect the difference. Rate-limit was less
common in the examined authenticated interfaces. Even when
applied, the rate-limit in authenticated interfaces was consis-
tently less strict as compared to unauthenticated interfaces.
Joomla and Wordpress do not require a password for credential
modification or for any other authenticated request that we
examined.

3We excluded Yahoo.com, Wikipedia.com and Ebay.com, which do not
require re-authentication with password to perform sensitive operations.
Youtube.com is excluded since it uses the same authentication mechanism
as Google.com, which is already surveyed.

11



APPENDIX B
VULNERABILITIES REPORTS AND RESPONSES

We reported the vulnerabilities described in our paper
to websites and system developers. The contact was made
through public / private bug bounty programs, email, and
contact forms. In our paper, due to ethical considerations,
we do not mention the specific names of vulnerable websites
and systems that did not manage to fix the vulnerabilities we
reported, or did not send a response.

A. Top Alexa Websites

Out of 25 vulnerable websites to which we sent a report, we
can currently bring only the responses of Reddit and Zillow.
Reddit’s security team confirmed the vulnerability and fixed it
by adding an anti-CSRF token to the login interface. Zillow’s
security team plans to implement a solution that will help
mitigate the security risks of the attack.

B. CMSs

We contacted Wordpress, Wordfence, All In One WP Se-
curity, and Drupal. All confirmed our findings that make
their systems vulnerable to XS Challenge-Response attacks.
Wordpress said that individual websites should decide how
to implement security solutions by using plugins, firewall
rules, or monitoring systems. Wordfence, the largest Word-
press security plugin, confirmed that they will block the
vulnerabilities, and are discussing possible solutions such as
CAPTCHA or account lockout to fix the vulnerability. All
In One WP Security, the second largest Wordpress security
plugin is also considering fixing the issue. Drupal confirmed
the vulnerability, and told us that future, possibly public
discussions should be held to find a reasonable mitigation (that
will not downgradge the user experience and performance).

C. IoT Devices and Routers

Currently, we can bring two responses from IoT or router
vendors. The CCTV manufacturer Hikvision is taking this
threat seriously and confirmed the vulnerability. However, they
mentioned that their new devices are not vulnerable to XS
Challenge-Response attacks, as they changed their design to
counter general CSRF attacks. That said, old models cannot
be remotely patched and updated, and are still vulnerable to
the attacks. The CCTV manufacturer Foscam is examining the
protection mechanisms described in our paper in order to fix
the login interfaces of CCTV devices.

12


