
HideNoSeek: Camou�aging Malicious JavaScript in
Benign ASTs

Aurore Fass, Michael Backes, and Ben Stock
CISPA Helmholtz Center for Information Security: {aurore.fass, backes, stock}@cispa.saarland

Abstract—In the malware �eld, learning-based systems

are getting popular to detect new malicious variants. Nev-

ertheless, it has been shown that attackers with speci�c and

internal knowledge of a target system may be able to produce

input samples which will be misclassi�ed. In practice, the

assumption of strong a�ackers with insider information is

not realistic. Therefore, we present HideNoSeek, a novel

and generic camou�age attack, which evades the entire class

of detectors based on syntactic features, without needing

any information about the system it is trying to evade. Our

attack consists of changing the constructs of a malicious

JavaScript sample to imitate a benign syntax. In particular,

HideNoSeek uses malicious seeds and searches for similar-

ities at the Abstract Syntax Tree (AST) level between the

seeds and traditional benign scripts. Thereby, benign sub-

ASTs are replaced by identical malicious ones, and the benign

data dependencies are adjusted–without changing the AST–,

so that the malicious semantic is kept after execution. In

practice, we are able to generate 51,853 malicious scripts from

21 malicious seeds and 8,279 benign web pages. In addition,

we can hide on average eight malicious samples in a benign

AST of the Alexa Top 10, and nine among �ve of the most

popular JavaScript libraries.

I. Introduction

JavaScript is a browser scripting language initially created
to enhance the interactivity of websites and to improve
their user-friendliness. However, as it o�oads the work
to the user’s browser, it is also used to engage in mali-
cious activities such as crypto mining, drive-by download
attacks, or redirections to websites hosting malicious soft-
ware [10, 33, 47]. Given the prevalence of such nefarious
scripts, the anti-virus industry has increased the focus on
their detection [15, 28, 41, 45, 64]. The attackers, in turn,
make increasing use of obfuscation techniques, e.g., string
manipulation, dynamic arrays, encoding obfuscation [74], to
evade detection by traditional anti-virus signatures and to
impose additional hurdles to manual analysis. Yet, using
the way in which lexical (e.g., keywords, identi�ers) or
syntactic (e.g., statements, expressions) units are arranged in
a given JavaScript �le provides valuable insight to capture
the salient properties of the code. This way, several systems

This work was partially supported by the German Federal Ministry of
Education and Research (BMBF) through funding for the Center for IT-
Security, Privacy and Accountability (CISPA) (FKZ: 16KIS0345).

leveraged the combination of lexical or syntactic features with
machine learning, to automatically and accurately detect new
malicious (obfuscated) variants [16, 19, 50, 60].

Nevertheless, the �eld of attacks against systems using
machine learning for classi�cation purpose is vast [4, 5]. In
particular, several attacks have already been proposed in,
e.g., the image or the malware �elds to evade classi�ers
by transforming a given input sample so that it keeps its
intrinsic properties, but the classi�er’s predictions between
the original and the modi�ed input di�er [17, 23, 25, 27,
39, 51, 52, 58, 62, 69, 76]. For them to work, all these
tools need information about the classi�er they are trying to
evade, like some knowledge about the target model internals,
or the training dataset, or at least the classi�cation scores
assigned to input samples. Another class of attacks focusses
on the transferability in machine learning. Indeed, adversarial
examples a�ecting one model often a�ect another, even if
they have di�erent architectures or training sets, provided
they were trained to perform the same task. Therefore at-
tackers can build and train their surrogate classi�er, craft
adversarial examples against it and transfer them to the
victim classi�er [42, 56, 57, 67, 70]. Still, the attackers need
a speci�c target system, as well as access to it, for them to
train their surrogate classi�er.

In this paper, we introduce a novel class of attacks which
works independently of any machine learning system and
does therefore not need any knowledge of model internals,
training dataset, or a classi�er to test. Indeed, HideNoSeek
leverages the fact that malicious obfuscation techniques leave
traces in the syntax of the malicious �les, which enables to
di�erentiate them from benign (even obfuscated) inputs. As a
consequence, changing the constructs of a malicious sample
to imitate a benign syntax by design foils any approach that
leverages the syntactic or lexical structure for classi�cation.
In particular, HideNoSeek automatically replaces sub-ASTs
(Abstract Syntax Trees) of a benign JavaScript input with a
malicious �le’s AST, while retaining the malicious semantics
in the modi�ed “benign“ �le. As a consequence, any classi�er
working on the syntactic structure is by construction bypassed
by our approach. Since a variety of benign samples and
libraries can be chosen for malicious replacement, our attack
is also e�ective against AV-systems using structural analysis,
e.g., signatures or content-matching.

Our implemented attack responds to the following chal-
lenges: practical applicability, e�ectiveness, and high impact.
We address these challenges by proposing a methodology to
detect, replace and adjust so-called clones at the AST level
between a benign and a malicious �le. The key elements of
HideNoSeek are the following:

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-60-6
https://dx.doi.org/10.14722/madweb.2019.23003
www.ndss-symposium.org

- Program Dependency Graph-Based Analysis — Our system
bene�ts from a syntactic analysis to transform JavaScript
code into an AST. The latter is used to build a Control
Flow Graph (CFG), which is leveraged to de�ne a Program
Dependency Graph (PDG), representing–besides the �ow of
control–the data dependencies between the nodes.
- Slicing-Based Clone Detection — The previous PDG is then
combined with backward slicing to detect syntactic clones–
i.e., isomorphic subgraphs between a benign and a malicious
�le–, with respect to control and data �ows.
- Benign AST Replacement — Once found, the benign clones
are replaced by malicious ones. The remaining benign code is
then automatically semantically modi�ed so that it a) is still
able to run, and b) keeps its original AST-based structure,
which will, therefore, foil syntactic detectors.
- Comprehensive Evaluation — We evaluate our system in
terms of the proportion, validity, and complexity of the mali-
cious samples it crafts, as well as the impact these documents
would have. For the malicious seeds, we use 23 syntactically
unique (deobfuscated) �les extracted after thorough analysis
and clustering of our 122,345 sample set. As for the benign
samples, we consider the scripts extracted from the start
pages of the Alexa top 10,000 websites, as well as 268 widely
used JavaScript library versions. Overall, HideNoSeek crafted
51,853 malicious �les with a benign AST mimicking the exact
syntax of scripts from Alexa Top 10k.

The remainder of this paper is organized as follows.
Section II introduces state-of-the-art JavaScript obfuscation
techniques and static detection systems. We describe the
methodology and implementation of HideNoSeek in Sec-
tion III. Subsequently, in Section IV we present the results
of our evaluation w.r.t. to the quantity, quality and impact of
the crafted samples; the implications of that evaluation are
further discussed in Section V. Finally, Section VI presents
related work and Section VII concludes.

II. JavaScript Obfuscation

This section �rst provides an overview of existing
JavaScript obfuscation techniques. Then, we select state-of-
the-art static systems, which can detect malicious (obfus-
cated) JavaScript. Finally, we introduce HideNoSeek, our
advanced method to hide malicious inputs into benign ASTs.

A. Obfuscation Techniques

To avoid detection by traditional AV-malware detectors,
attackers abuse obfuscation techniques. Several categories of
evasion can be found in the wild [32, 40, 74]:

• Randomization obfuscation consists of randomly insert-
ing or changing elements of a script without altering
its semantics, e.g., whitespace characters or comments
addition, variables name randomization, which foils
techniques relying on content matching.
• Data obfuscation regroups di�erent string manipulation

techniques, such as the combination of string splitting
and string concatenation, or character substitution.
• Encoding obfuscation avoids that a given string appears

in plaintext by using standard, e.g., ASCII, or custom en-
coding, as well as encryption and decryption functions.

Figure 1: Schematic depiction of our approach
• Logic structure obfuscation consists of adding irrelevant

instructions, which can take the form of numerous
conditional branches, in the target script.

Still, obfuscation should not be confused with malicious-
ness: benign obfuscation can protect intellectual property,
while malicious obfuscation hides the malicious intent of the
sample. Therefore, benign, malicious, or no obfuscation leave
di�erent traces in the syntax of the considered �les, which
can be leveraged for an accurate malware detection.

B. Static Detection Systems

Several systems combine the previous di�erences at a lex-
ical, syntactic, or structural level with o�-the-shelf supervised
machine learning tools to distinguish benign from malicious
JavaScript inputs. Due to their usage of static features, these
systems represent a subset of the detectors HideNoSeek
targets. In particular, Rieck et al. developed Cujo [60], which
combines an n-gram analysis of JavaScript lexical units with
an SVM classi�er for an accurate detection of malicious
inputs. Similarly, Stock et al. presented Kizzle [64], which
uses tokens extracted from di�erent exploit kits families for
clustering and signature generation. Moreover, Curtsinger et
al. implemented Zozzle [16], which combines the extraction
of features from the AST, as well as the corresponding
JavaScript text, with a Bayesian classi�cation system to
identify syntax elements highly predictive of malware. Hao
et al. also used a naive Bayes classi�cation algorithm [28]
to analyze JavaScript code by bene�tting from extended
API symbol features through the AST. With JaSt, Fass et
al. [19] leveraged the use of syntactic units, combined with a
random forest classi�er, to accurately detect new obfuscated
JavaScript instances. Still, these systems do not confound
obfuscation with maliciousness (c.f. Section II-A), but leverage
speci�c constructs for an accurate detection.

C. Malicious Transformation of ASTs

Instead of trying to hide the maliciousness of a �le behind
obfuscation layers, which are speci�c to malware and thereby
enable their detection, HideNoSeek changes the constructs
of a malicious sample to imitate a benign syntax. As a
consequence, it automatically foils the previously outlined
classi�ers. The main idea is to rewrite a malicious AST
into an existing benign one. To this end, it �rst looks for
similarities between the malicious and the benign ASTs. Since
malicious obfuscation is responsible for their di�erences, the
�rst step consists of deobfuscating the malicious �le, to get
the original syntax which resembles more a benign AST
than the obfuscated version. JSDetox [66] and box-js [12] are
combined with a manual analysis for the deobfuscation.

III. Methodology
The architecture of our system consists of an abstract code

representation part, a clone detector, as well as a malicious

2

1 var x = 1 ;
2 var y = 1 ;
3 i f (x == 1) { d = y ; }

Listing 1: JavaScript code example

code generator, as shown in Figure 1. First, we perform
a static analysis of JavaScript documents, augmenting the
traditional AST with control and data �ow information,
which are stored in a PDG. HideNoSeek then uses the new
graph structure to detect isomorphic subgraphs, which we
refer to as clones, between a benign and a malicious input.
Finally, the benign clones are replaced by the malicious ones,
and the modi�ed �le is automatically adjusted with respect
to the AST so that its malicious semantics is still executed. In
the following sections, we discuss the details of each stage.

A. Program Dependency Graph Analysis

In order to detect clones at the AST level between a
benign and a malicious �le, with respect to control and
data �ows, HideNoSeek is based on an abstract, labeled and
oriented code representation. The AST provides a hierarchical
decomposition of the source �le into syntactic elements, as
well as code abstraction, ignoring, for example, the variable
names and values to consider them as Identi�er or Literal
(note that for legibility reasons, the variable names and values
actually appear in the graphical representations this paper
contains, but they are not part of the graphs). The control
and data �ow between the graph’s nodes are indicated by
labels on the AST, which becomes a PDG.

1) Syntactic Analysis: The syntactic analysis is performed
by the open-source JavaScript parser Esprima [29], which
takes a valid JavaScript sample as input and produces an
ordered tree (the AST) describing the syntactic structure
of the program. Overall the Esprima parser can produce
up to 69 di�erent syntactic units, referred to as nodes.
Inner nodes represent operators such as VariableDeclaration,
AssignmentExpression or IfStatement, while the leaf nodes are
operands, e.g. Identi�er or Literal (with the exception of a
ContinueStatement or a BreakStatement). As an illustration,
Figure 2a shows the Esprima AST obtained from the code
snippet of Listing 1. As presented in the graph, the AST only
retains information about how the programming constructs
are nested to form the source code, but does not contain any
semantic information such as the control or data �ow, which
we need for clone detection.

2) Control Flow Analysis: Contrary to the AST, the CFG
allows to reason about the interplay of statements, in par-
ticular, the order in which they are executed, as well as the
conditions that have to be met for a speci�c execution path
to be taken. To this end, statements (predicates and non-
predicates) are represented by nodes that are connected by
labeled and directed edges to represent �ows of control.

We construct the CFG by traversing the previous AST’s
nodes depth-�rst pre-order. Since the Esprima AST does not
only comprise statements, but also contains non-statement
and still non-terminal information, as shown in Figure 2a,
we �rst de�ne a statement dependency edge (labeled with s).
It consists of linking a statement node, characterized as such
by the JavaScript grammar [18], to its non-statement chil-
dren, and recursively link them to their own non-statement

descendants all the way down to the leaves. After, we de�ne
two di�erent labels for the CFG edges linking two statement
nodes. The label e is used for edges originating from non-
predicate statements, while edges originating from predicates
are labeled with a boolean, standing for the value the predi-
cate has to evaluate to, for this path in the graph to be chosen,
as shown in Figure 2b. Contrary to the AST of Figure 2a,
this graph shows an execution path di�erence when the if
condition is true, and when it is not. Nevertheless, the CFG
still does not contain any data �ow information, which we
also need for clone detection.

3) Data Flow Analysis: To this end, we implement a
PDG [22], which augments the previous CFG with data
dependencies. For this purpose, statements are connected by
a directed data dependency edge if and only if, an element,
e.g., variable, object, function, de�ned or modi�ed at the
source node is used at the destination node, taking into
account the reaching de�nitions for each variable, as shown
in Figure 2c. This PDG indicates, in particular, the order in
which statements from Listing 1 should be executed, e.g., as
suggested by the data �ows, lines 1 and 2 are executed before
line 3; the lines 1 and 2 could nevertheless be interchanged
without altering the code semantics.

In JavaScript, a scope de�nes the accessibility of variables.
If a variable is de�ned outside of any function, or without
the var, let or const keywords, or using the window object,
it is in the global scope, whereas variables that can be used
only in a speci�c part of the code, e.g., block statement, are
considered to be in a local scope. To build our PDG, we
traverse the previous CFG depth-�rst pre-order and thereby
maintain two variables lists. The former contains the global
variables, and the latter the local variables currently declared
in the considered block statement, taking into account the fact
that variables de�ned with the let or const keyword have their
own local scope in the block where they were de�ned. As far
as objects are concerned, we keep the order in which they
are modi�ed, since we cannot statically predict which method
should be called on it �rst, e.g., an XMLHttpRequest must be
opened before the send() method is called. As a consequence,
we consider the data dependencies on the complete object and
that an object is modi�ed whenever a method is called on it,
or one of its property changed. In these cases, we implement
a data dependency between the previous object version and
the current one and update our variables list (local or global
according to the context) with a reference to the modi�ed
object. As far as functions are concerned, we handle their
name as a variable (local or global), since functions and
variables cannot share a name in JavaScript. In particular,
we make the distinction between function declarations–a
standalone construct de�ning named function variables–, and
function expressions–named or anonymous functions that
are part of larger expressions. Furthermore, HideNoSeek
respects the function scoping rules, and handles closures and
lexical scoping. Finally, the function call nodes are connected
to the corresponding function de�nition nodes with a data
dependency, thus de�ning the PDG at the program level [77].

B. Slicing-Based Clone Detection

Given the space B of benign JavaScript samples and the
spaceM of malicious ones (according to some oracle), we aim

3

Program

VariableDeclaration VariableDeclaration IfStatement

VariableDeclarator

Identifier Literal

x 1

VariableDeclarator

Identifier Literal

y 1

BinaryExpression BlockStatement

Identifier Literal

x 1

ExpressionStatement

AssignmentExpression

Identifier Identifier

d y

(a)

VariableDeclaration

VariableDeclarator

s

Identifier

s

Literal

s

x 1

VariableDeclaration

VariableDeclarator

s

Identifier

s

Literal

s

y 1

IfStatement

BinaryExpression

s

BlockStatement

True

Identifier

s

Literal

s

x 1

ExpressionStatement

e

AssignmentExpression

s

Identifier

s

Identifier

s

d y

(b)

VariableDeclaration

VariableDeclarator

s

Identifier

s

Literal

s

x Identifier

data

1

x

VariableDeclaration

VariableDeclarator

s

Identifier

s

Literal

s

y Identifier

data

1

y

IfStatement

BinaryExpression

s

BlockStatement

True

s

Literal

s

1

ExpressionStatement

e

AssignmentExpression

s

s

Identifier

s

d(c)

Figure 2: AST (a), CFG (b) and PDG (c) corresponding to the code of Listing 1

at building a sample space S so that:

S = {x |x ∈ M,∃x ′ ∈ B|ast(x) = ast(x ′)}

with ast(x) the AST of the sample x .

This can be achieved by �rst detecting malicious sub-ASTs
from a given �le that can also be found in a benign document,
with respect to control and data �ows. We refer to such
common structures as clones. To this end, the previous
representation of JavaScript code into a PDG, combined with
the use of program slicing is used. The strongest clones are
then selected according to metrics we de�ned.

1) Equivalence Classes: Finding clones between a benign
and a malicious �le consists of �nding isomorphic subgraphs
between the two documents. To this end, we consider the
algorithm of Komondoor et al. [46] which combines PDGs
and program slicing [73] for this purpose. Because of slicing,
this algorithm can �nd non-contiguous clones (i.e., clones
whose components do not occur directly one after the other
in the source code), as well as clones in which matching
statements have been reordered. Indeed, the PDG provides
a certain level of abstraction, e.g., it ignores the variables’
name and value to consider them as Identi�er or Literal.
Even though they appear in the graphical representations this
paper contains, they are not part of the graphs, and we added
them to the �gures only for legibility reasons. Furthermore,
the PDG enables to bypass the arbitrary sequencing choices
made by the programmer and instead captures only the
dependencies (data and control �ows) between the di�erent
program components, which justi�es our decision for this
code representation.

First, HideNoSeek partitions the benign PDG statement
nodes into equivalence classes based on their syntactic struc-
ture. For example, the PDG of Figure 2c would have four dis-
tinct classes: VariableDeclaration (containing two elements),
IfStatement, BlockStatement, and ExpressionStatement. Then,
the previous equivalence classes are completed with the
considered malicious �le, e.g., the PDG of Figure 3 would add
two malicious elements in the class ExpressionStatement. At
this stage, it is not sure that a benign and a malicious node
from the same class match, as they could have a di�erent
subgraph, which is the case in the previous example. We do
this test in the next step.

1 wscript = WScript.CreateObject(’WScript.Shell’);
2 wscript.run("cmd.exe /c \"<malicious powershell>;\"", "0");

Listing 2: Malicious JavaScript code example

ExpressionStatement

AssignmentExpression

s

Identifier

s

CallExpression

s

wscript Identifier

data

MemberExpression

s

Literal

s

Identifier

s

Identifier

s

WScript CreateObject

WScript.Shell wscript

ExpressionStatement

CallExpression

s

MemberExpression

s

Literal

s

Literal

s

s

Identifier

s

run

cmd.exe /c "<malicious powershell command>;"0

Figure 3: PDG corresponding to the code of Listing 2
2) Clone Detection: The next step consists of iterating

through the previous equivalence list: for each equivalence
class, the �nd_clone function, described in Algorithm 1, is
called on every benign and malicious pair (b, m). To �nd two
isomorphic subgraphs, the former containing b and the latter
m, HideNoSeek veri�es that they have the same complete
sub-AST by traversing and comparing their respective nodes
along the statement dependencies. Then it slices backward in
lock step along the data and control dependencies, starting
from b and m, adding them as well as their predecessor to
one slice if and only if their respective predecessor match (i.e.,
same class and same sub-AST). We iterate the process as long
as predecessors that have not been handled yet are found.
In addition, whenever we �nd a pair of matching statement
nodes that we have already handled, the process stops for
the current pair, the system retrieves the clones which have
been found previously on the pair and adds these nodes to
the current slice. Besides performance improvement, it also
ensures that no subsumed clones are reported at this stage.
Furthermore, when a pair of non-matching statement nodes
(b, m) is tested, the system still recursively slices backward
from b and tests its predecessors against m, which enables to
jump over benign data �ow dependencies to �nd more non-
continuous clones. Because of this step, we can found two iso-
morphic subgraphs which are not PDGs, therefore expanding
the possible set of clones. For example, HideNoSeek detects
that the ASTs of Listing 2 and Listing 3 match respectively for
the lines 2 and 3 (format: a.b(str1, str2)). By slicing backward
along the data dependencies, our system respectively tests the
lines 1 and 2, which do not match. Applying the previous rule,
it respectively tests the lines 1 and 1 which match (format:
a = b.c(str)). This way, the complete AST of Listing 2 can
be found in Listing 3. To avoid in�nite loops on each pair
tested, a list is kept to handle them only once. When the
process �nishes, it has identi�ed two isomorphic subgraphs:
one benign and one malicious, which may contain several
nodes. Further pairs of isomorphic subgraphs (independent
from the previous ones) may be found while iterating through

4

1 o b j = document . c r e a t e E l e m e n t (" o b j e c t ") ;
2 o b j . s e t A t t r i b u t e (" i d " , t h i s . i n t e r n a l . f l a s h . i d) ;
3 o b j . s e t A t t r i b u t e (" type " , " a p p l i c a t i o n / x−shockwave− f l a s h ") ;
4 o b j . s e t A t t r i b u t e (" t a b i n d e x " , "−1 ") ;
5 c r e a t e P a r a m (obj , " f l a s h v a r s " , f l a s h V a r s) ;

Listing 3: Initial extract of the plugin jPlayer 2.9.2 (benign)

the equivalence classes, hence the need for some metrics to
determine the strongest pair of clones.

Data: benign, malicious, clones_list
Result: clones_list entry with the corresponding benign and

malicious subgraphs
initialization;
if benign and malicious belong to the same equivalence class and have
the exact same complete sub-AST then

if they have already been handled together then

search the corresponding clones_list entry;
append the clones found so far to it;

else

create a a new clones_list entry;
add benign and malicious to it;
ben_parents ← backward_slice(benign);
mal_parents ← backward_slice(malicious);
iterate over ben_parents and mal_parents;
call �nd_clone on the resulting combinations;

end

else

ben_parents ← backward_slice(benign);
iterate over ben_parents;
call once �nd_clone(ben_parent, malicious);

end

return clones_list

Algorithm 1: �nd_clone(): �nds two isomorphic subgraphs
between a benign and a malicious PDG

3) Strongest Clones Selection: A portion of the same ma-
licious AST can be found several times in the benign one
(the opposite may also be true). In this case, HideNoSeek
selects only one. The �rst criterion consists of choosing the
largest clone (based on the number of matching statement
nodes it contains), and not a subsumed version of it, so as to
maximize the clone coverage, knowing that subsumed clones
can only be reported when the system jumps over a non-
matching benign node to consider its data �ow predecessors.
The second criterion consists of maximizing the proportion of
identical tokens between the benign and the crafted samples.
Indeed, mimicking the AST automatically copies most of the
tokens, but we may observe some di�erences for the syntactic
unit Literal, which can be translated into several tokens, e.g.,
Int, Numeric, Null, depending on the context. If some tokens
do not match, HideNoSeek reports them and suggests how
to modify them, for them to match the initial tokens, e.g., the
Bool false is equivalent to the String "0", and to the Int 0. The
third and last criterion consists of minimizing the distance
between the nodes inside a clone, therefore minimizing the
adjustment surface (Section III-C2).

Nevertheless, HideNoSeek does not necessarily report
clones for all (b, m) pairs tested, as they may have di�erent
syntactic structures. For this purpose, we semi-automatically
generated di�erent syntactic versions of a malicious �le to
improve the proportion of clones reported (c.f. Section IV-A1).
For example, the VariableDeclaration var a = 10 (in top-level
code), the AssignmentExpression a = 10, and the Expression-
Statement window.a = 10 are semantically equivalent, but
syntactically di�erent.

C. Malicious Code with a Benign AST

Once HideNoSeek �nds one (or several) unique malicious
AST equivalent in the benign �le, it replaces the benign sub-
AST with the malicious one. This process then yields some
adjustments for the benign code to still be able to run.

1) Clone Replacement: An AST is composed of inner nodes
and of leaf-nodes, the latter which represent the operands.
Saying that a benign AST is identical to a malicious AST
means that they have the same nodes, with the same oriented
edges. Still, the benign code is di�erent from the malicious
one, which is possible as the variables name are not directly
contained in the AST, but rather are attributes of the leaf
nodes. As a consequence, replacing the attributes of the
benign leaf nodes with the malicious ones would replace the
benign code portion, previously selected by HideNoSeek, by
the malicious code, while keeping the same AST structure.
The lines 1 and 3 of Listing 4 illustrate the replacement
of Listing 2 in the corresponding part of Listing 3 (c.f.
Section III-B2). Nevertheless, the replacement process has
modi�ed the benign environment and might, therefore, in-
terfere with the benign functionalities, which could result in
the modi�ed sample not running anymore.

2) Benign Adjustments and Code Generation: As a coun-
termeasure, HideNoSeek searches for fragments that may
have been impacted by the replacement process and au-
tomatically adjusts them to the environment, so that the
modi�ed code still runs. To this end, it recursively explores
the data dependencies originating from benign clone nodes,
under the conditions that (a) they do not belong to a cloned
node and (b) they have not been handled yet, e.g., lines 2, 4
and 5 from Listing 3. HideNoSeek �rst renames the benign
variables, impacted by the replacement, with the name of the
malicious variables which are now part of the code. Then,
it analyses the end of each data dependency, recursively
storing the nodes it contains in a list, all the way down to
the leaves. After that, our system searches in its database a
sublist of the previous nodes list to determine the generic
modi�cations that have to be done to the benign nodes, for
the code to still run while keeping its initial AST structure
(if HideNoSeek does not �nd a match in the database, it
reports the missing pattern so that we can search for a
new adjustment and add it to the database). For example, if
[’CallExpression’, ’Identi�er’] matches the node list, it means
that the benign code would look like func(my_obj[params]),
where func and params are respectively a benign given
function with its parameters, and my_obj stands for the
object the data dependency points to, i.e. the object that
HideNoSeek modi�ed. As a consequence and because of our
modi�cation, the function may not run anymore. To avoid
this phenomenon, HideNoSeek replaces the initial function
name by a function which can be executed for every possible
parameter type and number, without throwing an error or
causing side e�ects. Such functions include, among others,
decodeURI(), isFinite(), toString(). Our current list contains
nine di�erent names, randomly selected each time that such
a replacement is needed. Line 5 of Listing 4 illustrates this
speci�c adjustment process. Other adjustments may include
a property or a method called on the object we modi�ed,
e.g., lines 2 and 4 of Listing 4. As previously, HideNoSeek
has a list of nine properties, that can also be used as meth-

5

ods, such as hasOwnProperty, toString, propertyIsEnumerable,
which can be combined and are valid in all contexts. Finally,
the ECMAScript code generator Escodegen [65] is used to
transform the modi�ed AST back to JavaScript code.

1 wscript = WScript.CreateObject(’WScript.Shell’);
2 wscript.toString(’id’, this.internal.flash.id);
3 wscript.run(’cmd.exe /c "<malicious powershell>;"’, "0");
4 wscript.hasOwnProperty(’tabindex’, ’-1’);
5 parseFloat(wscript, ’flashvars’, flashVars);

Listing 4: Modi�ed extract of the plugin jPlayer 2.9.2
(Listing 3) with the malicious code of Listing 2

IV. Comprehensive Evaluation

In this section, we outline the results of our extensive
evaluation. To produce malicious samples with a benign AST,
HideNoSeek disposes of 23 unique malicious seeds, which
can be hidden in a subset of our 8,546 di�erent benign scripts.
We �rst evaluated the number of malicious samples our
system was able to produce per seed, before considering the
impact our attack would have. Then, we veri�ed the validity
and maliciousness of the samples previously crafted. Finally,
we tested HideNoSeek on real-world detectors and analyzed
its run-time performance.

A. Experimental Setup

The experimental evaluation of our approach rests upon
two extensive datasets. The former contains 122,345 unique
(based on their SHA1 hash) malicious JavaScript samples,
while the latter is comprised of 8,941 unique benign �les.

1) Malicious Datasets: Our malicious dataset, presented in
Table I, is a collection of samples collected between 2014
and 2018 (73% of which have been collected after 2017). In
particular, it includes exploit kits provided by Kafeine DNC
(DNC) [38] and GeeksOnSecurity (GoS) [24], as well as the
malware collection of Hynek Petrak (Hynek) [59] and a local
information security government agency (GA). We consider
that all these �les are malicious. Indeed, the deobfuscation
and the manual analysis of these inputs, performed in the
next step, enabled us to exclude the documents, which did not
present any malicious behavior. The samples’ deobfuscation
was initially performed by JSDetox [66] and box-js [12], but
could not be automated due to malicious �les conducting
environment detection and refusing to execute. As a conse-
quence, each tested sample needed to be, at least partially,
manually deobfuscated. For this purpose, we clustered our
data (by source), based on the syntactic units it contained,
using an n-gram analysis [15, 19, 50, 60]. From the 122,345
scripts, we got 61 clusters, which reduced the number of �les
to analyze manually. Subsequently, we randomly selected one
�le per cluster, deobfuscated and unpacked it until the initial
payload appeared; i.e., to a stage were no JavaScript was
dynamically created through means of eval or equivalents. In
essence, this is the state we assume a malicious entity would
have before obfuscation or packing. After deobfuscation, we
noticed that eight samples were either benign or incomplete
(e.g., we did not have the landing page of the exploit kit,
which prevented us from unpacking the malicious content)
and we could not �nd any valid substitute in the same
clusters. In contrast, two �les had two malicious behaviors
depending on the machine where they were executed. There-
fore, they gave us four deobfuscated samples instead of two.

Source Creation #JS Clusters Deobf

DNC 2014-18 4,444 9 11
Hynek 2015-17 30,247 15 15
GoS 2017 2,595 27 19
GA 2017-18 85,059 10 10

Sum 2014-18 122,345 61 55

VirusTotal 2017-18 13,884 8 8

Table I: JavaScript malicious dataset description

Source #JS #Valid JS

Alexa 10k 8,673 8,279
Libraries 268 267

Sum 8,941 8,546

Table II: JavaScript benign dataset description

Finally, we got 55 working malicious documents, 30 of which
are droppers, 3 call a PowerShell command, 2 a VBScript
command and 20 are exploit kits (e.g., donxref, meadgive,
RIG).

To avoid duplicated samples, we manually iterated over
the 55 scripts and looked for similar structures, e.g., the
combination of createElement and appendChild is often se-
mantically equivalent to document.write. As mentioned in
Section III-B3, we kept the di�erent variants found for Hi-
deNoSeek to test, in the case that it does not �nd a clone
with the �rst one. Still, we refer to all these variants as
one �le. Besides, we are working at the AST level, therefore
we consider here that two samples with the same AST but
a di�erent behavior are identical. After duplicate deletion,
we retained 22 unique malicious seeds, to which we added
a crypto-miner, as cryptojacking in browsers has recently
become a widespread threat [31, 47, 72]. Finally, to verify to
what extent our dataset was representative of the malicious
distribution found in the wild, we extracted 13,884 additional
samples from VirusTotal [68]. These samples were collected
after the �les we analyzed previously and did not contain
any duplicate. As before, we clustered them syntactically and
got 8 clusters (Table I), one �le of each we deobfuscated.
Since the 8 deobfuscated samples matched our 23-sample set
(7 matched known exploit kits, and 1 a dropper), we deemed
our dataset to be saturated.

2) Benign Datasets: As for the benign dataset (Table II),
we statically scraped the start pages of Alexa top 10,000
websites, also including external scripts. Given the fact that
this JavaScript was extracted from the start pages of high-
pro�le sites, we assume them to be benign. At the same
time, we downloaded the most popular JavaScript libraries
according to W3Techs [71]; this information is leveraged to
evaluate the impact our attack would have (Section IV-B2).

B. Evasive Samples Generation

HideNoSeek leverages the 23 malicious seeds to produce
malware with a benign AST. In this section, we �rst report the
number of samples that our system could craft per malicious
seed, before evaluating the impact our attack would have on
the highest ranked web pages and libraries.

1) Evasion per Malicious Seed: In our �rst experiment,
we studied the number of samples that HideNoSeek could

6

produce per malicious seed, by using the Alexa top 10,000
web pages as a benign dataset. During the deobfuscation
process (Section IV-A1), we noticed that exploit kits from
the same family (based on AV labels) could have a di�erent
syntactic structure, as well as a di�erent behavior. In these
cases, they appear several times in the seeds from Table III.
This table represents the number of malicious samples crafted
per malicious seed (second and �fth columns), the number of
nodes that HideNoSeek had to adjust due to the replacement
of benign sub-ASTs with malicious ones (third and sixth
columns), as well as the total number of nodes contained
in the crafted samples (fourth and seventh columns). In
particular, we make a distinction between the samples crafted
with the benign AST of a top 1,000 web page, against a
top 10,000 one. In fact, the number of crafted samples is
not linear and, proportionally, we tend to produce more
samples for the �rst 1,000 web pages (e.g., for Blackhole1
we could have expected to generate around 5,600 samples
in Alexa top 10,000 web pages, but in practice we got 10%
less; for Donxref2 we even got 40% less than expected). This
phenomenon can rather be observed when a certain amount
of clones has already been found on Alexa top 1,000 (from
a threshold of around 100 samples); otherwise, the data is
too sparse to be generalized. Still, the start pages of the
1,000 most consulted websites do not seem to be larger (in
terms of delivered JavaScript) than the start pages of the top
10,000. It rather is the opposite since, on average, our PDGs
contain more nodes for pages from Alexa top 10,000 than
Alexa top 1,000. Nevertheless, the �rst 1,000 seem to have
a more complicated structure with, in particular, more data
dependencies: for each replacement HideNoSeek made, it had
to adjust more nodes for the �rst 1,000 web pages. For this
reason, we estimate that the higher complexity of the �rst
1,000 web pages was more favorable to hide malicious seeds,
whose di�erent statements highly depend on each other.

The success of our hiding process also depends on the
syntactic structures the seeds contain, and to what extent
their syntax can also be found in benign scripts. With the
exploit kit Misc, HideNoSeek was able to generate an evasive
sample for 78% of the pages from Alexa top 10,000. On the
contrary, it was unable to craft samples for two malicious
seeds, namely Dropper and RIG2. For both of them, the
di�culty lay in the syntactic structures they used, which were
never found in benign documents. For example, our dropper
used three times the construct new ActiveXObject("object"),
which we could, e.g., map to the benign construct new
RegExp("regexp"); in our sample set, however, we found no
such pattern. Therefore, we looked for a new syntactic
construct, semantically equivalent to the previous one, but
which could be found in benign documents too. For this
purpose, we studied the most common structures between
our malicious seeds and benign dataset. The following struc-
ture a.b("") was found in 105,463 statements that matched
benign and malicious documents. As a consequence, we
replaced the previous malicious dropper’s construct with
its equivalent WScript.CreateObject("object"), but we did not
get any clone either. Nevertheless, our tool reported 360
crafted samples for the PowerShell seed (Table III), which
is actually a dropper too. Therefore, an attacker could still
hide a dropper in 360 web pages from Alexa top 10,000. As
for RIG2, it contained complex syntactic structures, such as

ALEXA-1k ALEXA-10k
Seed #Samples #Adjust #Nodes #Samples #Adjust #Nodes

Blackhole1 558 93 106,897 5,042 68 120,271
Blackhole2 558 52 106,897 5,040 37 120,179
Crimepack1 209 74 89,700 1,388 55 103,944
Crimepack2 76 41 112,308 806 52 118,599
Crimepack3 73 54 145,970 847 95 152,309
Crypto-miner 85 211 75,523 259 137 128,797
Donxref1 66 26 131,348 921 45 137,618
Donxref2 132 471 88,672 774 361 116,051
Dropper 0 - - 0 - -
EK 18 7 140,958 237 20 144,814
Fallout 5 65 175,568 61 32 168,924
Injected1 679 68 97,494 6,415 47 105,543
Injected2 366 155 111,244 3,205 66 124,678
Meadgive 431 58 109,712 4,253 45 121,024
Misc 683 27 96,434 6,487 6 104,459
Neclu1 95 86 77,799 380 96 103,028
Neclu2 450 59 110,201 4,405 70 122,074
Packer 42 56 111,339 428 77 140,209
PowerShell 22 16 117,451 360 23 144,478
RIG1 17 47 180,265 203 160 172,221
RIG2 0 - - 0 - -
VBScript1 584 15 100,254 5,276 8 114,526
VBScript2 552 48 105,613 5,066 16 118,566

Table III: Analysis of the proportion of samples crafted per
malicious seed

Alexa top 10 #Samples #Nodes

1 google.com 13 58,322
2 youtube.com 14 151,527
3 facebook.com 7 143,772
4 baidu.com 7 35,018
5 wikipedia.org 0 -
6 qq.com 7 54,450
7 yahoo.com 8 67,264
8 taobao.com 7 89,910
9 tmall.com 8 63,102
10 amazon.com 8 36,060

Table IV: Analysis of the number of samples that could be
hidden in Alexa top 10

window.frames[0].document.body.innerHTML, that benign web
pages might tend to simplify, e.g., by storing this statement
into several variables. We highlight potential improvements
for this process in Section V.

Overall, and out of the 23 malicious seeds HideNoSeek
got as input, it was able to craft malware for 21 of them.
In total, it produced 5,701 malicious samples with the benign
AST of an Alexa top 1k web page, and 51,853 for the top 10k.
We believe this number can be improved by using di�erent
syntactic structures for the seeds; as the most common
patterns can be identi�ed easily (as above), the malware
authors could adjust the code to use those constructs.

2) Impact of the Attack: HideNoSeek is able to hide a
given malicious seed into di�erent web pages–while keeping
their initial AST–, thereby static detectors would fail to see
the maliciousness. As a second experiment, we studied the
impact our attack would have by targeting speci�c domains.
For that, we focused on hiding malicious JavaScript in the
most frequented web pages and libraries. Table IV indicates
how many malicious seeds HideNoSeek could hide in Alexa
top 10 web pages. In particular, between 57% and 60% of
our seeds could be hidden in the start pages of the two
most visited web pages, which would maximize the impact,
in terms of infected users through web page browsing, of
our attack. Except for wikipedia.org, where no clones were
reported, we could hide a third of our seeds in the other top
10 web pages. Still, we know that for the attack to be e�ective

7

in practice, the server of these pages would have to be
compromised, so that the original web page could be replaced
by our crafted one. Should that happen, our modi�ed website
version would be harder to spot than, e.g., the British Airways
attack [44], because of its structure exactly mimicking a
benign syntax. A second way of infecting pages consists of
infecting the libraries that these websites use.

For our third experiment, we considered �ve of the
most popular JavaScript libraries, based on the proportion of
websites using them [71], and studied the number of malware
we could hide inside (Table V). The proportion ranges from
13% to 56% and is a bit higher than from Alexa top 10,
where on average 8 seeds could be hidden, compared to 9
in the libraries. Similar to Android malware in repackaged
applications [9, 61, 79], we envision that HideNoSeek could
alter benign libraries and present them as an improved
version of the original one, for malicious purpose. More
speci�cally, such a modi�cation of jQuery 1.12.4 would a�ect
29.7% of the websites, according to [71].

C. Validity Tests

Based on the insights that HideNoSeek could leverage 21
out of 23 malicious seeds to craft 51,853 malicious scripts,
which have the exact same AST as scripts extracted from
start pages of Alexa top 10,000, in this section, we verify the
validity and maliciousness of the produced samples.

1) Same AST for Crafted and Benign Scripts: First and by
construction, all malicious samples crafted by HideNoSeek
have the same AST as the benign scripts it used for the
replacement processes. Without further testing, this guaran-
tees that classi�ers purely based on syntactic features (e.g.
JaSt [19]) will not be able to distinguish them.

2) Same Tokens for Crafted and Benign Scripts: Second,
most of the tokens are similar between an initial benign �le
and a crafted one. The minor di�erences may come from a
Literal node, which can represent several tokens depending
on the context (Section III-B3). On average, 0.15 token di�er
for each 51,853 �le crafted from Alexa top 10,000 websites
(containing on average 115,717 nodes). Depending on the
detector our implementation is trying to evade, this may be
su�cient to prevent the evasion; e.g., for Kizzle [64], our
malicious sample would be clustered together with benign
samples due to their choice of maximum distance within a
cluster. Moreover, we would produce at most one such sample
every ten crafted script, which we assume to be negligible
when considering the impact our attack would have (e.g.,
jQuery is used by 73.5% of the websites and a malicious
modi�cation of the most widely used version 1.12.4 would
a�ect 29.7% of these sites [71]).

3) Crafted Scripts Still Running: Third, HideNoSeek mod-
i�ed the syntactic structure of a benign input to hide a
malicious script inside, which could result in the crafted
sample not running anymore. To decrease the proportion of
broken samples, we implemented a module, which is able to
detect parts of the program that may have been impacted
by our transformations–by following the data dependencies
originating from our replacements (Section III-C2). Still, some
adjustments may not be working in the speci�c context where
they have been transplanted, e.g., trying to get the length

Libraries Usage Version #Samples #Nodes

jQuery 73.5% 1.12.4 13 35,511
Bootstrap 18.1% 3.3.7 10 10,973
Modernizr 11.4% 2.8.3 3 3,174
MooTools 2.4% 1.6.0 7 27,786
Angular 0.4% 1.7.5-min 11 60,234

Table V: Analysis of the number of samples that could be
hidden among the most widely used JavaScript libraries [71]

of an unde�ned object will throw an error. In addition, Hi-
deNoSeek searches clones between a benign and a malicious
input, with respect to control and data �ows. Nevertheless,
it still is valid to replace two independent benign sub-ASTs
by two malicious sub-ASTs, with variables declared in the
global scope, depending on one another. In this case, we
have to ensure that the execution order of these two ASTs
is respected to avoid ReferenceError at runtime. To verify the
correct execution of our crafted samples, we used the library
jsdom [36]–which emulates web browser functionalities, e.g.,
DOM elements–to test JavaScript implementations using web
standards with Node.js. This is necessary to ensure that in
our tests, we do not break functionality that requires DOM
components. At the same time, however, this environment
cannot be used to test scripts scraped from websites, as
the JSDOM is essentially a placeholder, and the downloaded
JavaScript often relied on speci�c constructs in the DOM.
Therefore, we executed every crafted sample from standalone
benign libraries, like jQuery, to verify that they could still
run without throwing, e.g., a ReferenceError. Out of the 1,224
samples we crafted from jQuery, 846 were still able to run,
which represents 69% of them. As stated in Section IV-C2,
we rather consider the impact our attack would have by
using the working crafted samples, than the proportion of
working samples HideNoSeek generates. For this purpose,
related work [17, 52, 70, 76] combined their implementation
with an oracle, which dynamically tested the validity and
maliciousness of the samples they produced. In our speci�c
case, such an infrastructure could not be built due to the
complexity of emulating environments speci�c to each web
page that should have been tested. Still, we were able to use
23 malicious seeds to produce 846 working malicious versions
of jQuery, which had the exact same AST as the original ones.

4) Crafted Scripts With a Malicious Behavior: Last but not
least, it is not su�cient to verify the executability of the
samples; we also needed to ensure that the malicious parts
were either called or could at least be triggered. For this
purpose, we randomly selected two working crafted samples
per malicious seed and executed them in a web browser.
Thereby, we manually veri�ed which malicious parts were
already called if any, and which should still be called. In
fact, the jQuery library de�nes objects and methods for
future use and does therefore not necessarily directly call
them. As a consequence, we searched all malicious parts in
the considered scripts, triggered their execution whenever
possible (e.g., a closure cannot be called) and veri�ed their
correct execution order. Out of the 28 samples we manually
analyzed, 20 did present a malicious behavior.

D. Evaluation Against Real-World Systems

In this section, we classify the 51,853 samples–previously
crafted by HideNoSeek– using several detectors and the �ve

8

Figure 4: Time required to test our 23 malicious seeds on the
two most popular websites and libraries

machine learning models presented in [19] (note that no
scripts from Alexa were used to train the models, which are
therefore independent of our test set and will not in�uence
the classi�ers’ decisions). We averaged the detection results
over �ve runs. By construction, our attack foils JaSt, which
purely relies on the AST for malicious JavaScript detection.
Still, it could detect 266.6 crafted samples (detection accuracy:
0.48%) [2]. Since these �les have the same AST as the original
benign documents, we have 266.6 false-positives in the benign
seeds used to craft malware. On the contrary, Zozzle may
include the text of the AST node as an additional feature,
which could prevent the attack. Nevertheless, the system is
not open-source, and we did not get any inputs from the
authors. Based on the study of Cao et al. [11], we assume that
the perfect mapping of benign ASTs, which thereby induces a
lot of benign features in the malicious samples, would enable
HideNoSeek to evade most of Zozzle’s predictions. Last
but not least, we followed the indication of Rieck et al. to
reimplement the static part of Cujo. This system detected
accurately 18.4 crafted samples (detection accuracy: 0.04%),
3.2 scripts of which changed classi�cation between the benign
and the malicious samples (6.2E-3%). Thereby, we assume that
the tokens that might di�er between the two �le versions
have a negligible impact, while considering the number of
malware HideNoSeek crafts.

E. Run-Time Performance

The run-time performance of our system was tested on
a commodity PC with a quad-core Intel(R) Core(TM) i3-
2120 CPU at 3.30GHz and 8GB of RAM. The throughput
evaluation was done on the two highest ranked Alexa web
pages (google.com and youtube.com) and the two most popular
JavaScript libraries (jQuery and bootstrap). Figure 4 presents
the processing times, for all stages of HideNoSeek, to craft
the 50 previous malware (Section IV-B2). The most time-
consuming operation corresponds to the actual clones detec-
tion, which is NP-complete (Section III-B) and highly depends
on the size of the PDGs (Table IV, Table V). The code
generation phase is also relatively time-consuming as we
traverse the PDGs of the crafted samples, so that Escodegen
can produce the code back. Last but not least, the generation
of the benign PDGs (each of them produced only once and
stored for future use) may take some time depending on the
size of the AST and the complexity of the code (number of
data dependencies). Overall, the generation of the previous
50 samples took �fteen minutes.

V. Discussion

In this section, we �rst examine the limitations our attack
might have, focusing on the static analysis of JavaScript. We
then discuss existing defenses against attacks on machine

learning systems and argue why they would not work for
HideNoSeek. Still, we motivate some defenses that might
prevent our system from crafting evasive samples. Finally,
we introduce new strategies to improve our attack.

a) Limitations: HideNoSeek is based on a static analy-
sis of JavaScript to build both the control and data dependen-
cies in a given script. On the one hand, this approach provides
a complete code coverage, evaluating all possible execution
paths. On the other hand, it is subject to the traditional �aws
induced by the high dynamic of the language [1, 21, 34, 35].
In particular, JavaScript can generate code at run-time, e.g.,
with the eval function, a dynamically constructed string can
be interpreted as a program fragment and executed in the
current scope. Still, HideNoSeek is resilient to many of these
�aws, as it is applied to manually deobfuscated malicious
samples. In particular, we speci�cally deleted all dynamic
constructs to have the payload directly accessible (this should
not be a problem to malware authors as they have the original
malicious payload at their disposable).

b) Existing Defenses: As mentioned in Section I, the
�eld of attacks against systems using machine learning for
classi�cation purpose, e.g., in the image or malware �elds,
is vast. Di�erent studies assessed the security of learning-
based detection techniques by evaluating the hardness of
evasion, according to the information leaks an attacker might
have, such as a black-box access to the classi�er or dataset
related inputs [8, 13, 14, 20, 70]. More recently, systems
have been proposed to detect adversarial examples–i.e., inputs
speci�cally crafted to foil a target classi�er. They rely on
the detection of unreliable results [63], statistical tests [26],
dimensionality reduction [7, 75], the detection of adversarial
perturbations [53, 54], or vectorization [37]. Nevertheless, we
envision that none of them would work for our attack as we
perfectly map an actual benign �le syntactic structure.

c) Potential Detection Strategies: To exactly mimic a
benign AST, the malicious seed �rst has to be deobfuscated,
thus leaving its malicious logic in the open. Therefore, signa-
tures might be able to detect our crafted samples. In practice,
Virus Total analyzed the 28 samples selected in Section IV-C
with between 42 and 57 di�erent AV-systems. 4 crafted
samples were detected (namely Donxref1 and PowerShell, two
times each), and by at most 2 AV-vendors. Even though the
detection accuracy is very low, we envision that HideNoSeek
could slightly obfuscate obvious malicious behavior, e.g., with
percent-encoding, to completely bypass signature-detection.
Another possibility to detect malicious inputs crafted by
HideNoSeek would be to (a) recognize the original benign
sample used for the hiding process, and (b) notice that
it di�ers from the benign input it is supposed to be. In
theory, if the original sample is recognized, a checksum
test should indicate whether it is the original version or
not. Nevertheless, the o�cial library source code can also
be altered for benign purposes, like functionality extensions
or caching proxies, or stored together with other libraries.
In particular, we used retirejs [55] to extract 73 di�erent
versions of jQuery used by Alexa top 10,000 web pages. Still,
none of them matched the hash given on the o�cial jQuery
web page (for the previous reasons), essentially nullifying a
checksum. Apart from this, HideNoSeek is an attack against
static malicious JavaScript detectors, and does not necessarily

9

also foil hybrid or dynamic detectors such as Rozzle [45]
or J-Force [43], which force the JavaScript execution engine
to test all possible execution paths systematically. Similarly,
Revolver [41] could detect that the original benign and the
crafted sample have the same AST but that their classi�ca-
tion results—according to its dynamic detector–di�er, which
would be labeled as an evasion attempt. Still, we provide
a generic camou�age attack that evades the entire class of
detectors based on syntactic features, also most of the lexical
and structural detectors, without needing any information or
access to the target systems.

d) Improving the Evasion: To improve the number of
malicious samples HideNoSeek can generate, we envision
that it could be paired with an intelligent syntactic obfus-
cator module. This system would be able to automatically
transform a malicious syntactic structure into a semantically
similar one, whose AST could be found in a benign �le. We
leave this implementation for future work.

VI. Related Work

HideNoSeek is a novel attack against malware detectors.
Indeed, contrary to previously presented attacks, it does not
need any information about the systems it evades. At the
same time, it uses di�erent data representations, e.g., AST
and PDG, which are used in the �elds of security analysis
and clone detection too.

a) Adversarial Attacks: In the literature, several ap-
proaches have been proposed to evade targeted malware
detectors, all of which need to have at least a black-box access
to the system they are trying to evade. In particular, Šrndić
et al. studied the range of possible attacks, according to the
information leaks an attacker might have [70]. In addition,
they explored the strategy of training a substitute model to
�nd evading inputs, as well as the possibility to modify a
malicious �le so that it mimics the features of a chosen benign
target [69]. Similarly, Fogla et al. introduced the polymorphic
blending attacks to evade byte frequency-based network
anomaly IDS by matching the statistics of the mutated attack
instances to normal pro�les [23]. Then, both Dang et al. and
Xu et al. developed a system which stochastically manipulates
malicious samples to �nd a variant, preserving the malicious
behavior (oracle needed), while being classi�ed as benign by
the target (black-box access to the detector needed) [17, 76].
Contrary to the previous approaches, Maiorca et al. aimed at
injecting malicious content in benign PDF documents so as to
introduce minimum di�erences within its benign structure,
while having a malicious behavior (reverse mimicry) [52].
Last but not least, Grosse et al. adapted the algorithm of
Papernot et al. [58] to �nd which features should be changed
to craft adversarial samples in the malware �eld [27].

b) PDG for Security Analysis: HideNoSeek can also be
compared to systems using ASTs or PDGs for vulnerability
detections. For example, LangFuzz from Holler et al. automat-
ically crafts valid JavaScript samples based on inputs known
to have caused invalid behavior before [30]. In particular,
it replaces a given code fragment of an input �le by a
fragment of the same type (according to the grammar), while
we replace a benign chunk by a syntactically equivalent
malicious one (with respect to control and data �ows in
our case). Similarly, Yamaguchi et al. guided the search for

new exploits by extrapolating known vulnerabilities using
structural patterns extracted from the AST, which enabled
them to �nd similar �aws in other projects [78]. To mine a
more signi�cant amount of source code for vulnerabilities,
Yamaguchi et al. later introduced the code property graph–
merging AST, CFG, and PDG into a joint data structure–
to inspect the code structure with respect to control and
data �ows [77]. This new data structure was also used by
Backes et al. to identify di�erent types of Web application
vulnerabilities [3].

c) PDG for Clone Detection: HideNoSeek also rests
upon a clone detection algorithm to carefully spot isomorphic
subgraphs between benign and malicious ASTs. First, Koschke
et al. proposed a token-based clone detection algorithm based
on su�x trees. Nevertheless, it yields clone candidates whose
syntactic units might di�er [48]. On the contrary, Baxter
et al. introduced in 1998 an algorithm capable of detecting
exact and near-miss clones over program fragments by means
of ASTs [6]. Then, Krinke et al. considered PDGs, as an
abstraction of the source code semantics, to identify similar
code in programs [49]. Last but not least, Komondoor et
al. combined PDGs with the use of program slicing to �nd
clones in C programs [46]. The addition of the slicing part
enabled them to �nd non-contiguous clones, clones in which
matching statements have been reordered, as well as clones
intertwined with each other.

VII. Conclusion

Many malicious JavaScript samples today are obfuscated
to hinder the analysis and the creation of signatures. Nev-
ertheless, these speci�c evasion techniques tend to leave
recurrent traces in the syntax of malware, thereby contribut-
ing to their detection by lexical or syntactic classi�ers. In
this paper, we proposed HideNoSeek, a generic camou�age
attack, which evades the entire class of syntactic detec-
tors, as well as most of the lexical and structural systems,
without needing any information about (or access to) the
target systems. In fact, it changes the constructs of malicious
samples to imitate benign syntax. The key elements of our
approach are the following: (a) a modeling of the control
and data �ows extracted from the malicious seeds to hide,
and from the benign �les providing their AST as hiding
place; (b) a detection and analysis of isomorphic sub-ASTs,
with respect to control and data dependencies, between the
previous benign and malicious inputs; (c) the replacement and
adjustment of benign sub-ASTs by their malicious equivalents
and (d) the evaluation of HideNoSeek on an extensive dataset
of both malware and benign scripts. In practice, our approach
is highly e�ective with its production of 51,853 malware from
21 malicious seeds and 8,279 benign web pages. In addition, it
has a high impact: on average HideNoSeek crafts 8 malicious
samples in each Alexa top 10 web page, and 9 in the �ve
JavaScript libraries among the most commonly used. This
way, we envision that our attack could alter benign libraries
and present them as an improved version of the original
one, for malicious purpose. In particular, we could hide 13
malicious seeds in jQuery 1.12.4, which would a�ect 27.7% of
all websites [71].

10

References

[1] E. Andreasen and A. Møller, “Determinacy in Static
Analysis for jQuery,” in International Conference on
Object Oriented Programming Systems Languages & Ap-
plications (OOPSLA), 2014.

[2] Aurore54F, “JaSt - JS AST-Based Analysis,” In: https:
//github.com/Aurore54F/JaSt. Accessed on 2018-12-17.

[3] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Ya-
maguchi, “E�cient and Flexible Discovery of PHP Ap-
plication Vulnerabilities,” in S&P, 2017.

[4] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar,
“The Security of Machine Learning,” Machine Learning,
2010.

[5] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D.
Tygar, “Can Machine Learning Be Secure?” in ASIACCS,
2006.

[6] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier, “Clone Detection Using Abstract Syntax Trees,”
in International Conference on Software Maintenance
(ICSM), 1998.

[7] A. N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal,
“Enhancing Robustness of Machine Learning Systems
via Data Transformations,” Annual Conference on Infor-
mation Sciences and Systems (CISS), 2018.

[8] B. Biggio, G. Fumera, and F. Roli, “Multiple Classi�er
Systems for Adversarial Classi�cation Tasks,” in Inter-
national Workshop on Multiple Classi�er Systems, 2009.

[9] J. Boutet, “Malicious Android Applications: Risks
and Exploitation - A Spyware story about Android
Application and Reverse Engineering,” In: https://www.
sans.org/reading-room/whitepapers/threats/malicious-
android-applications-risks-exploitation-33578. Accessed
on 2018-09-14.

[10] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler:
A Fast Filter for the Large-scale Detection of Malicious
Web Pages,” in International Conference on World Wide
Web (WWW), 2011.

[11] Y. Cao, X. Pan, Y. Chen, and J. Zhuge, “JShield: Towards
Real-time and Vulnerability-based Detection of Polluted
Drive-by Download Attacks,” in Annual Computer Secu-
rity Applications Conference (ACSAC), 2014.

[12] CapacitorSet, “box-js - A tool for studying JavaScript
malware,” In: https://github.com/CapacitorSet/box-js.
Accessed on 2018-05-28.

[13] N. Carlini and D. Wagner, “Adversarial Examples Are
Not Easily Detected: Bypassing Ten Detection Methods,”
in ACM Workshop on Arti�cial Intelligence and Security,
2017.

[14] ——, “Towards Evaluating the Robustness of Neural
Networks,” arXiv preprint arXiv:1608.04644v2, 2017.

[15] M. Cova, C. Kruegel, and G. Vigna, “Detection and
Analysis of Drive-by-download Attacks and Malicious
JavaScript Code,” in International Conference on World
Wide Web (WWW), 2010.

[16] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert,
“Zozzle: Fast and Precise In-Browser JavaScript Mal-
ware Detection,” in USENIX Security, 2011.

[17] H. Dang, Y. Huang, and E.-C. Chang, “Evading Classi-
�ers by Morphing in the Dark,” in CCS, 2017.

[18] Ecma International, “ECMAScript 2018 Language Speci-
�cation (ECMA-262, 9th edition, June 2018),” In: https://

www.ecma-international.org/ecma-262/9.0. Accessed on
2018-06-27.

[19] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock,
“JaSt: Fully Syntactic Detection of Malicious (Obfus-
cated) JavaScript,” in DIMVA, 2018.

[20] A. Fawzi, O. Fawzi, and P. Frossard, “Analysis of Classi-
�ers’ Robustness to Adversarial Perturbations,” Machine
Learning, 2015.

[21] A. Feldthaus and A. Møller, “Semi-Automatic Rename
Refactoring for JavaScript,” in Proc. ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2013.

[22] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The
Program Dependence Graph and Its Use in Optimiza-
tion,” ACM Transactions on Programming Languages and
Systems (TOPLAS), 1987.

[23] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and
W. Lee, “Polymorphic Blending Attacks,” in USENIX
Security, 2006.

[24] GeeksOnSecurity, “Malicious Javascript Dataset,”
In: https://github.com/geeksonsecurity/js-malicious-
dataset. Accessed on 2018-07-13.

[25] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” in International
Conference on Learning Representations, 2015.

[26] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and
P. McDaniel, “On the (Statistical) Detection of Adversar-
ial Examples,” arXiv preprint arXiv:1702.06280v2, 2017.

[27] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and
P. McDaniel, “Adversarial Perturbations Against Deep
Neural Networks for Malware Classi�cation,” in Euro-
pean Symposium on Research in Computer Security, 2017.

[28] Y. Hao, H. Liang, D. Zhang, Q. Zhao, and B. Cui,
“JavaScript Malicious Codes Analysis Based on Naive
Bayes Classi�cation,” in International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, 2014.

[29] A. Hidayat, “ECMAScript Parsing Infrastructure for
Multipurpose Analysis,” In: http://esprima.org. Accessed
on 2018-09-16.

[30] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with Code
Fragments,” in USENIX Security, 2012.

[31] G. Hong, Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang,
M. Yang, Y. Zhang, Z. Qian, and H. Duan, “How You
Get Shot in the Back: A Systematical Study About
Cryptojacking in the Real World,” in CCS, 2018.

[32] F. Howard, “Malware with your Mocha? Obfuscation
and anti emulation tricks in malicious JavaScript,”
In: https://www.sophos.com/en-us/medialibrary/pdfs/
technical%20papers/malware_with_your_mocha.pdf.
Accessed on 2018-08-09.

[33] L. Invernizzi, S. Benvenuti, M. Cova, P. M. Comparetti,
C. Kruegel, and G. Vigna, “EvilSeed: A Guided Ap-
proach to Finding Malicious Web Pages,” in S&P, 2012.

[34] S. H. Jensen, P. A. Jonsson, and A. Møller, “Remedying
the Eval That Men Do,” in International Symposium on
Software Testing and Analysis (ISSTA), 2012.

[35] S. H. Jensen, A. Møller, and P. Thiemann, “Type Analysis
for JavaScript,” in International Symposium on Static
Analysis (SAS), 2009.

[36] jsdom, “jsdom - A JavaScript implementation of the
WHATWG DOM and HTML standards, for use with
node.js,” In: https://github.com/jsdom/jsdom. Accessed

11

https://github.com/Aurore54F/JaSt
https://github.com/Aurore54F/JaSt
https://www.sans.org/reading-room/whitepapers/threats/malicious-android-applications-risks-exploitation-33578
https://www.sans.org/reading-room/whitepapers/threats/malicious-android-applications-risks-exploitation-33578
https://www.sans.org/reading-room/whitepapers/threats/malicious-android-applications-risks-exploitation-33578
https://github.com/CapacitorSet/box-js
https://www.ecma-international.org/ecma-262/9.0
https://www.ecma-international.org/ecma-262/9.0
https://github.com/geeksonsecurity/js-malicious-dataset
https://github.com/geeksonsecurity/js-malicious-dataset
http://esprima.org
https://www.sophos.com/en-us/medialibrary/pdfs/technical%20papers/malware_with_your_mocha.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical%20papers/malware_with_your_mocha.pdf
https://github.com/jsdom/jsdom

on 2018-11-12.
[37] V. M. Kabilan, B. Morris, and A. Nguyen, “VectorDe-

fense: Vectorization as a Defense to Adversarial Exam-
ples,” arXiv preprint arXiv:1804.08529v1, 2018.

[38] Kafeine, “MDNC - Malware don’t need co�ee,” In: https:
//malware.dontneedco�ee.com. Accessed on 2018-09-27.

[39] A. Kantchelian, J. D. Tygar, and A. D. Joseph, “Evasion
and Hardening of Tree Ensemble Classi�ers,” in Interna-
tional Conference on Machine Learning, 2016.

[40] S. Kaplan, B. Livshits, B. Zorn, C. Siefert, and
C. Curtsinger, “"NoFus: Automatically Detecting" +
String.fromCharCode(32) + "ObFuSCateD ".toLower-
Case() + "JavaScript Code",” in Microsoft Research Tech-
nical Report, 2011.

[41] A. Kapravelos, Y. Shoshitaishvili, M. Cova, and C. Krügel
and Giovanni Vigna, “Revolver: An Automated Ap-
proach to the Detection of Evasive Web-based Malware,”
in USENIX Security, 2013.

[42] Z. Khorshidpour, S. Hashemi, and A. Hamzeh, “Evalu-
ation of Random Forest Classi�er in Security Domain,”
Applied Intelligence, 2017.

[43] K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng,
X. Zhang, and D. Xu, “J-Force: Forced Execution on
JavaScript,” in WWW, 2017.

[44] Y. Klijnsma, “Inside the Magecart Breach of British
Airways: How 22 Lines of Code Claimed 380,000 Vic-
tims,” In: https://www.riskiq.com/blog/labs/magecart-
british-airways-breach. Accessed on 2018-09-14.

[45] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert, “Rozzle:
De-cloaking Internet Malware,” in S&P, 2012.

[46] R. Komondoor and S. Horwitz, “Using Slicing to Identify
Duplication in Source Code,” in International Symposium
on Static Analysis (SAS), 2001.

[47] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer,
C. Kruegel, H. Bos, and G. Vigna, “MineSweeper: An In-
depth Look into Drive-by Cryptocurrency Mining and
Its Defense,” in CSS, 2018.

[48] R. Koschke, R. Falke, and P. Frenzel, “Clone Detection
Using Abstract Syntax Su�x Trees,” in Working Confer-
ence on Reverse Engineering, 2006.

[49] J. Krinke, “Identifying Similar Code with Program De-
pendence Graphs,” in Working Conference on Reverse
Engineering (WCRE), 2001.

[50] P. Laskov and N. Šrndić, “Static Detection of Malicious
JavaScript-Bearing PDF Documents,” in Annual Com-
puter Security Applications Conference (ACSAC), 2011.

[51] D. Lowd and C. Meek, “Adversarial Learning,” in Interna-
tional Conference on Knowledge Discovery in Data Mining
(KDD), 2005.

[52] D. Maiorca, I. Corona, and G. Giacinto, “Looking at the
Bag is Not Enough to Find the Bomb: An Evasion of
Structural Methods for Malicious PDF Files Detection,”
in ASIACCS, 2013.

[53] D. Meng and H. Chen, “MagNet: A Two-Pronged De-
fense Against Adversarial Examples,” in CCS, 2017.

[54] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischo�,
“On Detecting Adversarial Perturbations,” in Interna-
tional Conference on Learning Representation (ICLR),
2017.

[55] E. Oftedal, “Retire.js: What you require you must also
retire,” In: https://retirejs.github.io/retire.js/. Accessed on
2018-10-31.

[56] N. Papernot, P. McDaniel, and I. Goodfellow, “Transfer-
ability in Machine Learning: from Phenomena to Black-
Box Attacks using Adversarial Samples,” arXiv preprint
arXiv:1605.07277, 2016.

[57] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Ce-
lik, and A. Swami, “Practical Black-Box Attacks Against
Machine Learning,” in ASIACCS, 2017.

[58] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami, “The Limitations of Deep Learning
in Adversarial Settings,” in Euro S&P, 2016.

[59] H. Petrak, “Javascript Malware Collection,” In:
https://github.com/HynekPetrak/javascript-malware-
collection. Accessed on 2018-07-17.

[60] K. Rieck, T. Krueger, and A. Dewald, “Cujo: E�cient De-
tection and Prevention of Drive-by-Download Attacks,”
in Annual Computer Security Applications Conference
(ACSAC), 2010.

[61] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “To-
wards a Scalable Resource-driven Approach for Detect-
ing Repackaged Android Applications,” in Annual Com-
puter Security Applications Conference (ACSAC), 2014.

[62] C. Smutz and A. Stavrou, “Malicious PDF Detection
using Metadata and Structural Features,” in Annual Com-
puter Security Applications Conference (ACSAC), 2012.

[63] ——, “When a Tree Falls: Using Diversity in Ensemble
Classi�ers to Identify Evasion in Malware Detectors,” in
NDSS, 2016.

[64] B. Stock, B. Livshits, and B. Zorn, “Kizzle: A Signature
Compiler for Detecting Exploit Kits,” in Dependable
Systems and Networks (DSN), 2016.

[65] Y. Suzuki, “ECMAScript Code Generator,” In: https://
github.com/estools/escodegen. Accessed on 2018-06-15.

[66] Sven, “JSDetox - A Javascript malware analysis tool
using static analysis / deobfuscation techniques and
an execution engine featuring HTML DOM em-
ulation,” In: http://www.relentless-coding.org/projects/
jsdetox. Accessed on 2018-05-24.

[67] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “The Space of Transferable Adversarial
Examples,” arXiv preprint arXiv:1704.03453v2, 2017.

[68] VirusTotal, “VirusTotal - Analyze suspicious �les and
URLs to detect types of malware, automatically share
them with the security community,” In: https://www.
virustotal.com. Accessed on 2018-10-04.

[69] N. Šrndić and P. Laskov, “Detection of Malicious PDF
Files Based on Hierarchical Document Structure,” in
NDSS, 2013.

[70] N. Šrndic and P. Laskov, “Practical Evasion of a
Learning-Based Classi�er: A Case Study,” in S&P, 2014.

[71] W3Techs, “Usage of JavaScript libraries for web-
sites,” In: https://w3techs.com/technologies/overview/
javascript_library/all. Accessed on 2018-11-13.

[72] W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao,
“SEISMIC: SEcure In-lined Script Monitors for Interrupt-
ing Cryptojacks,” in European Symposium on Research in
Computer Security (ESORICS), 2018.

[73] M. Weiser, “Program Slicing,” in International Conference
on Software Engineering (ICSE), 1981.

[74] W. Xu, F. Zhang, and S. Zhu, “The Power of Obfuscation
Techniques in Malicious JavaScript Code: A Measure-
ment Study,” in International Conference on Malicious and
Unwanted Software (MALWARE), 2012.

12

https://malware.dontneedcoffee.com
https://malware.dontneedcoffee.com
https://www.riskiq.com/blog/labs/magecart-british-airways-breach
https://www.riskiq.com/blog/labs/magecart-british-airways-breach
https://retirejs.github.io/retire.js/
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/estools/escodegen
https://github.com/estools/escodegen
http://www.relentless-coding.org/projects/jsdetox
http://www.relentless-coding.org/projects/jsdetox
https://www.virustotal.com
https://www.virustotal.com
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all

[75] W. Xu, D. Evans, and Y. Qi, “Feature Squeezing: Detect-
ing Adversarial Examples in Deep Neural Networks,” in
NDSS, 2018.

[76] W. Xu, Y. Qi, and D. Evans, “Automatically Evading
Classi�ers: A Case Study on PDF Malware Classi�ers,”
in NDSS, 2016.

[77] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Model-
ing and Discovering Vulnerabilities with Code Property
Graphs,” in S&P, 2014.

[78] F. Yamaguchi, M. Lottmann, and K. Rieck, “General-
ized Vulnerability Extrapolation Using Abstract Syntax
Trees,” in Annual Computer Security Applications Confer-
ence (ACSAC), 2012.

[79] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting
Repackaged Smartphone Applications in Third-party
Android Marketplaces,” in ACM Conference on Data and
Application Security and Privacy, 2012.

13

	Introduction
	JavaScript Obfuscation
	Obfuscation Techniques
	Static Detection Systems
	Malicious Transformation of ASTs

	Methodology
	Program Dependency Graph Analysis
	Syntactic Analysis
	Control Flow Analysis
	Data Flow Analysis

	Slicing-Based Clone Detection
	Equivalence Classes
	Clone Detection
	Strongest Clones Selection

	Malicious Code with a Benign AST
	Clone Replacement
	Benign Adjustments and Code Generation

	Comprehensive Evaluation
	Experimental Setup
	Malicious Datasets
	Benign Datasets

	Evasive Samples Generation
	Evasion per Malicious Seed
	Impact of the Attack

	Validity Tests
	Same AST for Crafted and Benign Scripts
	Same Tokens for Crafted and Benign Scripts
	Crafted Scripts Still Running
	Crafted Scripts With a Malicious Behavior

	Evaluation Against Real-World Systems
	Run-Time Performance

	Discussion
	Related Work
	Conclusion

