
Measuring the Impact of HTTP/2 and Server Push
on Web Fingerprinting

Weiran Lin, Sanjeev Reddy, and Nikita Borisov
University of Illinois at Urbana-Champaign
{wlin40,streddy2,nikita}@illinois.edu

Abstract—The growing deployment of transport- and link-
layer encryption mechanisms helps to protect users’ security.
However, privacy attacks are still possible due to patterns
present in the network traffic. Web fingerprinting, in particular,
can reveal what web site or page someone is visiting despite
encryption. In this paper, we set out to study what impact new
web standards—in particular, HTTP/2 and Server Push—have
on the ability of adversaries to perform web fingerprinting, as
these technologies significantly change network traffic patterns.

We created web page models of top Alexa sites that cap-
tured the dependency structure of the resources on the site.
We then captured network traces loading these models using
both HTTP/1.1 and HTTP/2 with Server Push, and evaluated
their susceptibility to state-of-the-art web fingerprinting attacks.
Our results show that HTTP/2 presents a smaller fingerprinting
surface for an adversary than HTTP/1.1. Additionally, it admits
a simple padding scheme that can further reduce web finger-
printing success. This scheme is competitive with other state-of-
the-art defenses, and only presents a small amount of bandwidth
overhead.

I. INTRODUCTION

A growing fraction of Internet traffic is protected with end-
to-end and link-layer encryption. HTTPS is representing an
ever-growing fraction of web traffic [8]. Likewise, the usage of
virtual private networks has seen significant growth.1 Although
these technologies protect the integrity and confidentiality of
network traffic, they leave visible patterns of traffic that may
still reveal sensitive information. In particular, web fingerprint-
ing2 can be used to learn what site—or page within a site—
someone is visiting, by analyzing traffic generated by their web
browser.

There are a number of traffic features that contribute to
the success of fingerprinting. An important one that has been
identified by prior work is the burst feature; the number of
packets that are sent in one direction before a packet in the
other direction. This feature is dependent on the protocol
“dialogue” between the server and client, and it is precisely
this dialog flow that is intended to be streamlined by the
HTTP/2 server push feature. [2, §8.2] Server push is designed
to eliminate the round-trip to request site resources that are
referenced by a web page by having the server push the
referenced resources preemptively. We therefore investigate the
impact of server push on the amount of data that is leaked to
fingerprinting.

1https://www.vpnmentor.com/blog/vpn-use-data-privacy-stats/
2We use the term web fingerprinting in place of the popular website

fingerprinting as the underlying techniques apply both within and across sites.

As the deployment of HTTP/2 is still in its infancy, we
perform our evaluation in a synthetic setting. To make it
realistic, we collect web page models from the 99 most popular
sites, as ranked by Alexa [1]. These models capture the
dependency structure of the pages, as well as the sizes of
each individual site resource, thus capturing the features that
influence the network trace of loading a page. We then serve
these models over both HTTP/1.1 and HTTP/2, and use state-
of-the-art web fingerprinting techniques [11], [27] to evaluate
each protocol’s susceptibility to fingerprinting.

We found that there was a notable decrease in fingerprint-
ing accuracy—from 80% to 74%—when HTTP/2 with server
push was used, although fingerprinting was still possible. We
identified three sources of information that contributed to this:
the length of the site name/URL, the names of the page
dependencies that are pushed, and the total size of the page.
We therefore investigated whether padding could be used to
reduce the information available from these sources. With
an average padding overhead of 25%, fingerprinting accuracy
falls to 64%. We note that these figures are comparable to
existing padding protocols in the literature [4], [5], [14] but
can be implemented without changing the web transport and
application layer protocols.

II. BACKGROUND

In this section we review some background on web page
structure, HTTP/2 and server push, and web fingerprinting.

A. Web page structure

A common web page is comprised of a large number of
resources, such as images, scripts, stylesheets, and frames.
When a user navigates to a URL, the browser first requests
and downloads the main HTML page. It then parses it to find
references to embedded resources and makes new requests
for them. Each resource may recursively reference other re-
sources, causing even more requests to be generated. Figure 1
shows the various components of an example site, arranged
in a dependency graph. According to the HTTP Archive, in
September 2018 a median (desktop) web page consisted of 75
site resources and correspondingly required 75 requests.3

The complex structure of pages has the potential to sig-
nificantly slow down page load times. In addition to the large
total size of all the objects (≈ 1.5 MB, according to the HTTP
Archive), each individual request adds latency: each additional
request adds a round-trip latency, compounded by any pro-
cessing time the browser needs to parse the response and

3https://httparchive.org/reports/state-of-the-web, fetched Oct 17, 2018.

https://www.vpnmentor.com/blog/vpn-use-data-privacy-stats/
https://httparchive.org/reports/state-of-the-web

	
	

hello.js
welcome.png welcome.css

welcome.woff2 helloworld.js hello.css example.jpg hello.bmp format.css a.woff2

example.html

welcome.html

login.html

Fig. 1. The structure of an example web page. The site resources include HTML documents (.html), stylesheets (.css), images (.bmp, .png, .jpg), scripts (.js),
and fonts (.woff2). The arrows represent the dependency structure of the page; each resource points to other resources that it references/causes to be loaded.

identify new requests. Browsers and web servers use a number
of techniques to speed up this process, including connection
reuse, simultaneous parallel connections, incremental resource
parsing, resource scheduling and prioritization, etc. Note that
HTTP request pipelining [9, §6.3.2] was designed to reduce
round-trip latency associated with site dependency requests;
however, it has since been disabled by major web browsers
due to head-of-line blocking and other issues.4 These partially
mitigate, but do not eliminate, the performance overhead
created by multiple site resources.

a) HTTP/2: The SPDY protocol [10] and its successor,
HTTP/2 [2], were designed in part to address these issues.
They define a number of features, such as multiplexing mul-
tiple objects in one stream, the ability to asynchronously
schedule requests (similar to pipelining), as well as prioritize
and cancel them (to avoid head-of-line blocking), and server
push. The latter is motivated by the fact that a server can
predict that a user loading example.html in Figure 1 will also
want to load welcome.html, welcome.png, etc. The server
can therefore proactively start sending these objects to the
client without waiting for an explicit request.

Note that server push does not always result in faster
page load times; Wang et al. found that server push might
introduce extra overhead by pushing unneeded (e.g., cached)
resources, depending on push configurations as well as client
latencies [30]. Our present goal is to understand the privacy
implications of the push mechanism to help inform its future
deployment.

B. Web Fingerprinting

It has long been known that object sizes, not protected by
HTTPS, can reveal sensitive information [26]. This gave rise
to web fingerprinting, where someone who observes encrypted
web traffic uses patterns of traffic, such as packet sizes, counts,
directions, and timings, to discern what web site or web page

4See, for example, https://www.chromium.org/developers/
design-documents/network-stack/http-pipelining

a user is visiting. Web fingerprinting applies in two contexts.
First, when using an anonymous communication tool, such as
Tor [6], a local observer can try to use web fingerprinting to
infer the destination website [17], [23]. Alternately, someone
who is observing a direct HTTPS connection will know the
destination web site, but can use fingerprinting to learn which
page within a site is being visited [19].

The techniques for fingerprinting are similar in both cases:
consider a stream of packets with their times, sizes, and
directions, and use machine learning to classify them into
one of several potential destinations. The major difference is
that in Tor, traffic is sent over equal-sized cells, and therefore
packet sizes carry no information. Classification can be done
in a closed-world setting, where a packet trace is assumed to
be visiting one of a known set of web destinations, or open-
world, which adds the possibility that a visit is to a previously
unknown site. A full review of web fingerprinting techniques
is beyond the scope of this paper, but we will discuss the
particular techniques we use in section III-C.

A significant amount of work has gone into engineering the
features that are used for web classification. Recent work has
noted the importance of packets bursts—a sequence of packets
in the same direction—in fingerprinting [27], as they are
representative of the request-response pattern of a site and can
therefore help recover the site structure; some recent defenses
focus specifically on burst sizes [29]. We note that HTTP/2
with server push significantly changes the burst structure and
thus has the potential to impact fingerprinting success.

We should note that many assumptions behind web fin-
gerprinting research have been questioned [13] as being un-
realistic. Recent work, however, tries to address some of
these criticisms [28]; furthermore there are contexts, such as
onion (hidden) services in Tor [21] where fingerprinting is
particularly dangerous.

a) Defenses.: Initial work on defenses against web
fingerprinting focused on ad hoc approaches that modify
some of the aggregate features used in early fingerprinting

2

https://www.chromium.org/developers/design-documents/network-stack/http-pipelining
https://www.chromium.org/developers/design-documents/network-stack/http-pipelining

work [18], [24], [31]; however, these have been shown to
be largely ineffective by more sophisticated machine learning
techniques [3], [7]. Recent exploration has focused on variants
of constant rate defenses [4], [5]—where the server and client
communicate with each other using a constant-rate stream—
as this approach has a provable bound on the amount of
information available to a web fingerprinting attacker, i.e., the
total amount of data transferred in each direction (plus the rate,
in cases when it is adjustable).

In fact, an idealized version of an HTTP/2 page load with
server push resembles a constant-rate download, since a single
request from the client is satisfied by a download of all the
resources comprising a page, and as such, should present a
limited amount of information for fingerprinting. Therefore,
our goal is to evaluate this high-level intuition using actual
HTTP/2 implementations in browsers and web servers.

III. EXPERIMENTAL SET UP

To understand how HTTP/2 and server push affect finger-
printing, we wanted to do a head-to-head comparison between
HTTP/1.1 and HTTP/2 with server push. Since the deployment
of HTTP/2 is still sparse and the use of sever push is limited,
we created a synthetic experimental environment in which we
served the same web pages using both protocols and collected
traces for fingerprinting.

To ensure that our synthetic traces were realistic, we
modeled the structure of our test web pages on the structure
of actual popular web sites. We next describe our approach
for creating and serving these models. Finally, we discuss the
trace collection and fingerprinting techniques used.

A. Web Page Models

As discussed in section II-A, a web page is composed
of a number of different types of resources. We wanted our
model pages to accurately mimic the structure of real web
pages so that they would be representative of real-world sites.
To do so, we first performed a web crawl of the the 100
most popular websites as listed by Alexa [1] using a headless
version of Chromium. We used the Chrome DevTools proto-
col5 to intercept network events such as requestWillBeSent,
responseReceived, dataReceived, and loadingFinished to
keep track of the requests and responses that were sent and
received by the browser during the loading of the page. From
the metadata in these requests, we can extract the type of
the resource that is being requested (document (i.e., HTML
file), stylesheet, script, image, or font) as well as its size.
Additionally, we are able to learn what previously loaded
resource is responsible for loading this resource—e.g., a script
might load a font, a stylesheet might load an image, etc.—
through the initiator information in the responseReceived
event.

We then create a web page model that replicates the
structure attributes captured during our initial load. We create
a main HTML page, called index.html, that includes all the
resources directly loaded from the main page. For example,
in Figure 1, the example.html page loads an image, wel-
come.png, another html page, welcome.html, a stylesheet,

5https://chromedevtools.github.io/devtools-protocol/

<head>
< l i n k r e l =” s t y l e s h e e t ” hre f =” s h e e t 0 . c s s ”>
<s c r i p t s r c =” s c r i p t 0 . j s ”>< / s c r i p t>
<body>

<i frame s r c =” i nd ex 1 . h tml ”>< / i frame>
<!−−AAAAA [. . .] AAA−−>
< / body>

Fig. 2. The top-level HTML file in a web page model, which loads a
stylesheet (sheet0.css), a script (script1.js), an image (img0.gif), and another
HTML file in an iframe (index1.html).

welcome.css, and a script, hello.js. We would therefore create
resources of the corresponding type and load them from the
index.html file, as shown in fig. 2. We then add a comment
to pad the file to the same size as the main file of the original
site.

Likewise, we include directives in the other objects to load
their dependencies. For example, script0.js, which models
hello.js in fig. 1, will include Javascript commands to load
a font, another script, a stylesheet, an image, and a font; it
will then be padded to the correct size using comments. For
images, we create a 1 × 1 pixel GIF file with a comment
section that pads the object to the correct size (we found that
serving an invalid image file would cause the browser to abort
the load). The dependency structure of the resulting model is
shown in fig. 3

We have to use special handling for fonts, as Chromium
does not load a font unless it is actually used to render some
text. We therefore add a text element styled to use the loaded
font inside an HTML file. We also discovered in our testing
that Chromium reports that the font load is initiated by the
HTML file where it is used, even if the font is specified in
a separate stylesheet (CSS file). This means that our model
will miss a dependency of a font on a stylesheet; in fig. 3,
font0.woff, which models welcome.woff2 in fig. 1, depends
only on the main page and not the stylesheet sheet0.css,
which models welcome.css. We found a similar problem
when a stylesheet loads a second sheet using the @import
directive, resulting in another discrepancy for the dependency
structure of sheet1.css in fig. 3, which models format.css in
fig. 1. Since our goal is to create representative web pages,
rather than perfectly model each site, we felt this was an
acceptable deviation.

To validate our models, we loaded the model web pages
with headless Chromium and used the DevTools protocol to
note the request and response sizes, types, and order; we found
that the models matched the original web page behavior.

B. Trace Collection

To collect traces used for fingerprinting, we used the Caddy
web server6 to serve the model web pages and headless
Chromium to load them. The Caddy server was configured to
use HTTPS and HTTP/1.1 or HTTP/2, depending on the test
(we note that some of the modeled websites were served over
HTTP, but we used HTTPS, motivated by the trend towards

6https://caddyserver.com/

3

https://chromedevtools.github.io/devtools-protocol/
https://caddyserver.com/

	

index.html

index0.html script0.js img0.gif sheet0.css font0.woff

script1.js sheet2.css img1.gif index1.html img2.gif

sheet1.css

font1.woff

Fig. 3. A model of the example web page from fig. 1. The file types and sizes all match the original page. The dependency structure closely mimics the
original, but note that there is a deviation in how the font0.woff and sheet1.css are loaded.

greater HTTPS deployment). The server and browser were
run in separate Docker containers connected by an isolated
network. The browser container also ran tcpdump to produce
a PCAP file that served as our web trace. We processed the
PCAP to filter out DNS packets, omit any TCP packets that
carry no data, and recorded only the sizes, directions, and
timing of each packet. These attributes were then used as input
for fingerprinting.

As points of comparison, we also collected packet traces
of headless Chromium loading the original sites.

C. Classification

To perform web fingerprinting, we use features developed
by Wang et al. [27] for their k-nearest neighbor classifier.
Each packet stream is converted to a vector of 3766 features
capturing distributions of packet counts, sizes, bursts, etc.
However, Hayes and Danezis demonstrate that a random forest
classifier using the same set of features achieves a higher
classification accuracy [11], hence we use a random forest
classifier in our work. Later work has explored using different
features [22] as well as deep learning [25]; however, we use
the random forest technique because it allows us to perform
an analysis of feature importance.

In our classification, we first perform recursive feature
elimination with a step size of 100 to prune the 3766 features
down to the 100 most relevant ones. We also compute the
accuracy using all 3766 features, but in our experience the
classifier performs better on the reduced feature space. In
our experiments, we use closed-world classification, as it
generally has higher performance and thus better highlights
the information disparities resulting from protocol changes.

IV. EXPERIMENTS AND RESULTS

We next discuss the experiments we performed and their
results. A summary of the experimental resuls can be found
in table I.

TABLE I. SUMMARY OF RESULTS.

Experiment Accuracy
Original sites 91.3%± 4.3%
One model per site, HTTP/1.1 99.9%± 0.5%
One model per trace, HTTP/1.1 80.2%± 3.8%
HTTP/2 with server push 74.2%± 4.3%
HTTP/2 without server push 80.4%± 2.5%
HTTP/2 with 25% padding 68.5%± 4.6%
HTTP/2 with 25% padding, padded file names 63.5%± 8.0%

A. Sites and Models

We collected 30 traces each from the top 100 web sites as
ranked by Alexa [1]. One of the websites was down during our
collection, thus we were left with 99 × 30 = 2970 traces for
our experiment. We note that our random forest classifier, as
described in section III-C, performs very well on these traces:
it has a classification accuracy of 91.3%± 4.3%.7

We use each of the 30 traces to create a model. We note
that, as many of the web pages we load are dynamic, different
traces can—and often do—result in different page models. For
example, fig. 4 shows that many sites have significant variance
in the total size of all the objects that are downloaded. This
creates significant challenges for fingerprinting. For example,
when we collected 30 traces from a single model per site (i.e.,
using 1×99 models), served over HTTP/1.1, our classifier was
able to achieve 99.9% ± 0.5% accuracy. On the other hand,
using a different model for each trace and each site (i.e., using
30× 99 models), the accuracy fell to 80.2%± 3.8%.

Why is the classification accuracy of the synthetic sites
lower than the real sites? The biggest difference is that in our
experiment, all resources are served from a single web server,
whereas real sites typically access several origins at a time
(image servers, ad servers, etc.), using separate connections
with potentially varying latencies. We do note that there is
a trend towards serving a large fraction of a site’s resources
via content distribution networks (CDNs) [15], [16], and

7All of the accuracy numbers are obtained using 10-fold cross-validation;
we use two standard deviations of the accuracy scores across the folds to
approximate a 95% confidence interval.

4

Fig. 4. The distribution of total page size across 30 traces for each of the 99 sites in our data set. Each distribution is shown as a box plot, where the dashed
line represents the median, boxes capture the interquartile range, the whiskers represent the range, and individual points represent absent outliers.

CDNs are developing technology, such as the HTTP/2 origin
frame [20] to allow serving more components via a single
server connection.

A second factor is that we change the site names to
be of a uniform length. We discovered that the size of the
ClientHello packet is directly proportional to the length of the
site name, due to the name being embedded inside a Server
Name Indication (SNI) extension. In our data set, the site name
lengths have 3.2 bits of entropy. By padding the names to
the same length, we are able to eliminate this extra source of
fingerprinting and focus only on the impact of the protocol.
We note that this result also suggests that the proposed SNI
encryption [12] should consider padding the SNI as well.

B. HTTP/2 Server Push

To evaluate the impact of HTTP/2 server push on finger-
printing, we configured Caddy to use HTTP/2 and to push
all of the site resources in a model as soon as the top-level
HTML was requested. We then collected 30× 99 traces using
Chromium. The corresponding accuracy was 74.2% ± 4.3%.
Therefore, we conclude that HTTP/2 with server push is able
to reduce the amount of information available to fingerprinting.

HTTP/2, of course, makes a number of changes in addition
to sever push. To understand whether those changes have
an impact, we conduct a second set of experiments that
use HTTP/2 but not server push. The resulting accuracy is
80.4%±2.5%, or virtually identical to the HTTP/1.1 scenario.

C. Padding

As can be observed in fig. 4, there is some variability in
the total size of the download between different instances of
the same web page. However, some pages are significantly
less variable; 4 out of 99 sites have exactly the same total
size across all page loads. These sites are therefore easy to
fingerprint based on total size alone. Moreover, there are large
disparities in the range of total site sizes: the smallest site
transfers less than 500 KB, whereas the largest transfers over

Fig. 5. Results of adding padding to pages served with HTTP/2 server push,
compared to the classification results that only use the total download size.

10 MB. In fact, if we train a random forest classifier on a
single feature—the total number of bytes downloaded—we get
an accuracy of 58.1%± 2.8%.

We therefore consider adding padding to reduce the amount
of information that can be learned from the site size. We use a
simple padding scheme: if a site transfers k bytes, we pick x
uniformly at random from the range [0, α] and add k · x bytes
of padding, resulting in an average of kα/2 extra bandwidth
overhead. To implement this in our test setting, we add an
extra Javascript file that contains k · x bytes of comments to
the main HTML page of each model. In practice, to avoid the
parsing overhead, an empty image could be used. In addition,
the server could possibly be configured to push a padding
file not referenced by any object in the dependency tree. The
results of the padding experiments are shown in fig. 5 for
various average padding sizes.

We see that even a small amount of padding results in a
reduced accuracy: at 10% average padding, the accuracy is

5

70.0%± 7.1%, and with 25%, the accuracy is 68.5%± 4.6%.
For comparison, we experiment with serving the padded web
page over HTTP/1.1. The resulting accuracy (at 10% padding)
is 79.1% ± 4.3%. The web page structure available for fin-
gerprinting ensures that padding in HTTP/1.1 has little to no
effect.

We also try training a classifier on the total padded size
alone. We note that the accuracy is dramatically lower, suggest-
ing that other factors are contributing to fingerprinting success.

D. Feature Analysis

To understand what features impact the fingerprinting ac-
curacy, we perform a feature importance analysis. We first
use recursive feature elimination, similar to section III-C, to
further reduce the 100 features down to 20, eliminating one
feature at each step. We then perform a greedy search to find
the best features among those 20. We start by using each
individual feature to classify the data set and using 10-fold
cross validation to compute the classification accuracy µi and
standard deviation σi.

We then pick the best performing feature i∗ = argmaxi µi

and pair it with all remaining features to calculate µi∗+j to pick
the next best feature. We let Si denote the set of best i features
picked in this way; i.e., S1 = {i∗}, S2 = {i∗, j∗}. We continue
the algorithm until the improvement from adding a new feature
is less than one standard deviation, i.e., µSk

− σSk
< µSk+1

.

Since some feature choices result in similar classification
accuracies, instead of picking the unique set Si at each step, we
also consider any sets S′i such that µSi

−σSi
< µS′i

+σS′i . This
creates a small combinatorial increase in the number of sets
considered, but the approach remains largely greedy without
considering all

(
20
i

)
combinations.

When we apply the analysis to the previous classifier
that uses HTTP/2 with no padding, the four features that are
selected are (in order):

• 1: total number of packets received
• 3: total page load time
• 3705: the maximum burst size
• 3727: size of the 12th packet in the trace

The accuracy of using these features is shown in fig. 6. We note
that the first three features are strongly correlated to the total
size of data downloaded. The last one is a little unexpected;
upon inspection, this packet in the trace generally ranges from
154 to 156 bytes. However, the distribution is different for
different sites, as shown in fig. 7.

Upon further inspection, this packet contains the first push
promise, which includes the file name of the first file pushed by
the Caddy server. We note that the name of the first pushed file
ranges in length from 8 characters (img0.gif) to 10 characters
(sheet0.css), depending on the file type, which explains the
difference in the lengths.

We therefore create a new experiment where all pushed
files have names that are padded to the same length. With a
25% average overhead, the classification performance drops
to 63.5% ± 8.0%. We note that this is still much higher than
the accuracy resulting from classifying on total sizes alone—
11.0%±1.4%. Thus there is still a difference between HTTP/2

Fig. 6. Feature selection for HTTP/2 with 25% padding.

Fig. 7. Distribution of values for feature 3727: size of the 12th packet

with server push and the idealized constant-rate download of
the entire site. We will investigate the sources of this difference
in future work.

V. CONCLUSION

We examined the impact of HTTP/2 and server push on
web fingerprinting accuracy by creating a synthetic set of web
pages that model real-world web page structure. We found
that HTTP/2 with server push creates a significant reduction
in fingerprinting accuracy. We also found that adding a small
to moderate amount of padding further reduces fingerprinting
accuracy.

We can therefore issue a set of recommendations to
websites that wish to reduce their users’ susceptibility to
fingerprinting:

1) Serve as many site components as possible from a
single server

2) Use HTTP/2 and server push on that server
3) Normalize/pad the length of a site name (SNI) and

the request URLs of all site resources
4) Add a small-to-moderate amount of randomized

padding in the form of an unused, pushed web page
component

We note that all of these steps can be implemented using
existing tools, while allowing users to browse with off-the-
shelf browsers that support the HTTP/2 protocol.

REFERENCES

[1] Alexa, “Alexa top 500 global sites,” https://www.alexa.com/topsites,
2018.

6

https://www.alexa.com/topsites

[2] M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer protocol
version 2 (HTTP/2),” RFC7540, May 2015. [Online]. Available:
https://httpwg.org/specs/rfc7540.html

[3] X. Cai, X. Zhang, B. Joshi, and R. Johnson, “Touching from a distance:
Website fingerprinting attacks and defenses,” in In Proceedings of the
19th ACM conference on Computer and communications security, 2012,
pp. 605–616.

[4] X. Cai, R. Nithyanand, and R. Johnson, “CS-BufLO: A congestion
sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society. ACM, 2014, pp. 121–
130.

[5] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 227–238.

[6] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in In Proceedings of the 13th USENIX Security
Symposium, 2004, pp. 303–320.

[7] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-Boo,
I Still See You: Why Efficient Traffic Analysis Countermeasures Fail,”
in Proceedings of the 2012 IEEE Symposium on Security and Privacy.
Ieee, May 2012, pp. 332–346.

[8] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz,
“Measuring HTTPS adoption on the Web,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Asso-
ciation, 2017, pp. 1323–1338. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/felt

[9] R. Fielding and J. Reschke, “Hypertext transfer protocol (HTTP/1.1):
Message syntax and routing,” RFC7230, Jun. 2014. [Online]. Available:
https://httpwg.org/specs/rfc7230.html

[10] Google, “SPDY: An experimental protocol for a faster web,” https:
//www.chromium.org/spdy/spdy-whitepaper, 2010.

[11] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable
website fingerprinting technique,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, 2016, pp.
1187–1203. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/hayes

[12] C. Huitema and E. Rescorla, “Issues and Requirements for SNI Encryp-
tion in TLS,” Internet Engineering Task Force, Internet-Draft draft-ietf-
tls-sni-encryption-03, May 2018, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-tls-sni-encryption-03

[13] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical
analysis of website fingerprinting attacks,” in ACM Conference on
Computer and Communications Security (CCS), 2014.

[14] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an
efficient website fingerprinting defense,” in European Symposium on
Research in Computer Security. Springer, 2016, pp. 27–46.

[15] A. Kashaf, C. Zarate, H. Wang, Y. Agarwal, and V. Sekar, “Oh, what
a fragile web we weave: Third-party service dependencies in modern
webservices and implications,” 2018.

[16] D. Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason, J. A. Halderman,
and M. Bailey, “Security challenges in an increasingly tangled web,” in
Proceedings of the 26th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee, 2017,
pp. 677–684.

[17] M. Liberatore and B. N. Levine, “Inferring the source of encrypted
HTTP connections,” in In Proceedings of the 13th ACM conference on
Computer and Communications Security. New York, New York, USA:
ACM Press, 2006, p. 255.

[18] X. Luo, P. Zhou, E. Chan, and W. Lee, “HTTPOS: Sealing Information
Leaks with Browser-side Obfuscation of Encrypted Flows.” in In
Proceedings of the 18th Annual Network & Distributed System Security
Symposium, 2011.

[19] B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar, “I know why you
went to the clinic: Risks and realization of https traffic analysis,” in
Privacy Enhancing Technologies Symposium, 2014.

[20] M. Nottingham and E. Nygren, “The ORIGIN HTTP/2 frame,”
RFC8336, IETF, Mar. 2018. [Online]. Available: https://tools.ietf.org/
html/rfc8336

[21] R. Overdorf, M. Juarez, G. Acar, R. Greenstadt, and C. Diaz, “How
unique is your. onion?: An analysis of the fingerprintability of tor onion
services,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 2021–2036.

[22] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at Internet scale,” in Network
and Distributed System Security Symposium. Internet Society, 2016.

[23] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website fin-
gerprinting in onion routing based anonymization networks,” in In
Proceedings of the 10th annual ACM workshop on Privacy in the
electronic society. New York, New York, USA: ACM Press, 2011,
p. 103.

[24] M. Perry, “Experimental Defense for Website Traf-
fic Fingerprinting,” https://blog.torproject.org/blog/
experimental-defense-website-traffic-fingerprinting, 2011.

[25] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in Network
and Distributed System Security Symposium (NDSS). Internet Society,
2018.

[26] D. Wagner and B. Schneier, “Analysis of the SSL 3.0 protocol,” in
USENIX Workshop on Electronic Commerce, 1996.

[27] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and
I. Goldberg, “Effective attacks and provable defenses for website
fingerprinting,” in 23rd USENIX Security Symposium (USENIX
Security 14). San Diego, CA: USENIX Association, 2014,
pp. 143–157. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/wang tao

[28] T. Wang and I. Goldberg, “On realistically attacking tor with website
fingerprinting,” Proceedings on Privacy Enhancing Technologies, vol.
2016, no. 4, pp. 21–36, 2016.

[29] ——, “Walkie-talkie: An efficient defense against passive website
fingerprinting attacks,” in 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Association, 2017, pp.
1375–1390. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/wang-tao

[30] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“How speedy is SPDY?” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA:
USENIX Association, 2014, pp. 387–399. [Online]. Available:
https://www.usenix.org/conference/nsdi14/technical-sessions/wang

[31] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An
efficient defense against statistical traffic analysis,” in In Proceedings
of the 16th Annual Network & Distributed System Security Symposium,
2009.

7

https://httpwg.org/specs/rfc7540.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://httpwg.org/specs/rfc7230.html
https://www.chromium.org/spdy/spdy-whitepaper
https://www.chromium.org/spdy/spdy-whitepaper
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://datatracker.ietf.org/doc/html/draft-ietf-tls-sni-encryption-03
https://tools.ietf.org/html/rfc8336
https://tools.ietf.org/html/rfc8336
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/nsdi14/technical-sessions/wang

	Introduction
	Background
	Web page structure
	Web Fingerprinting

	Experimental Set Up
	Web Page Models
	Trace Collection
	Classification

	Experiments and Results
	Sites and Models
	HTTP/2 Server Push
	Padding
	Feature Analysis

	Conclusion
	References

